4 resultados para Amylose-extender

em National Center for Biotechnology Information - NCBI


Relevância:

60.00% 60.00%

Publicador:

Resumo:

In the developing endosperm of monocotyledonous plants, starch granules are synthesized and deposited within the amyloplast. A soluble stromal fraction was isolated from amyloplasts of immature maize (Zea mays L.) endosperm and analyzed for enzyme activities and polypeptide content. Specific activities of starch synthase and starch-branching enzyme (SBE), but not the cytosolic marker alcohol dehydrogenase, were strongly enhanced in soluble amyloplast stromal fractions relative to soluble extracts obtained from homogenized kernels or endosperms. Immunoblot analysis demonstrated that starch synthase I, SBEIIb, and sugary1, the putative starch-debranching enzyme, were each highly enriched in the amyloplast stroma, providing direct evidence for the localization of starch-biosynthetic enzymes within this compartment. Analysis of maize mutants shows the deficiency of the 85-kD SBEIIb polypeptide in the stroma of amylose extender cultivars and that the dull mutant lacks a >220-kD stromal polypeptide. The stromal fraction is distinguished by differential enrichment of a characteristic group of previously undocumented polypeptides. N-terminal sequence analysis revealed that an abundant 81-kD stromal polypeptide is a member of the Hsp70 family of stress-related proteins. Moreover, the 81-kD stromal polypeptide is strongly recognized by antibodies specific for an Hsp70 of the chloroplast stroma. These findings are discussed in light of implications for the correct folding and assembly of soluble, partially soluble, and granule-bound starch-biosynthetic enzymes during import into the amyloplast.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We engineered a full-length (8.3-kbp) cDNA coding for fatty acid synthase (FAS; EC 2.3.1.85) from the human brain FAS cDNA clones we characterized previously. In the process of accomplishing this task, we developed a novel PCR procedure, recombinant PCR, which is very useful in joining two overlapping DNA fragments that do not have a common or unique restriction site. The full-length cDNA was cloned in pMAL-c2 for heterologous expression in Escherichia coli as a maltose-binding protein fusion. The recombinant protein was purified by using amylose-resin affinity and hydroxylapatite chromatography. As expected from the coding capacity of the cDNA expressed, the chimeric recombinant protein has a molecular weight of 310,000 and reacts with antibodies against both human FAS and maltose-binding protein. The maltose-binding protein-human FAS (MBP-hFAS) catalyzed palmitate synthesis from acetyl-CoA, malonyl-CoA, and NADPH and exhibited all of the partial activities of FAS at levels comparable with those of the native human enzyme purified from HepG2 cells. Like the native HepG2 FAS, the products of MBP-hFAS are mainly palmitic acid (>90%) and minimal amounts of stearic and arachidic acids. Similarly, a human FAS cDNA encoding domain I (β-ketoacyl synthase, acetyl-CoA and malonyl-CoA transacylases, and β-hydroxyacyl dehydratase) was cloned and expressed in E. coli using pMAL-c2. The expressed fusion protein, MBP-hFAS domain I, was purified to apparent homogeneity (Mr 190,000) and exhibited the activities of the acetyl/malonyl transacylases and the β-hydroxyacyl dehydratase. In addition, a human FAS cDNA encoding domains II and III (enoyl and β-ketoacyl reductases, acyl carrier protein, and thioesterase) was cloned in pET-32b(+) and expressed in E. coli as a fusion protein with thioredoxin and six in-frame histidine residues. The recombinant fusion protein, thioredoxin-human FAS domains II and III, that was purified from E. coli had a molecular weight of 159,000 and exhibited the activities of the enoyl and β-ketoacyl reductases and the thioesterase. Both the MBP and the thioredoxin-His-tags do not appear to interfere with the catalytic activity of human FAS or its partial activities.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In vascular plants, mutations leading to a defect in debranching enzyme lead to the simultaneous synthesis of glycogen-like material and normal starch. In Chlamydomonas reinhardtii comparable defects lead to the replacement of starch by phytoglycogen. Therefore, debranching was proposed to define a mandatory step for starch biosynthesis. We now report the characterization of small amounts of an insoluble, amylose-like material found in the mutant algae. This novel, starch-like material was shown to be entirely dependent on the presence of granule-bound starch synthase (GBSSI), the enzyme responsible for amylose synthesis in plants. However, enzyme activity assays, solubilization of proteins from the granule, and western blots all failed to detect GBSSI within the insoluble polysaccharide matrix. The glycogen-like polysaccharides produced in the absence of GBSSI were proved to be qualitatively and quantitatively identical to those produced in its presence. Therefore, we propose that GBSSI requires the presence of crystalline amylopectin for granule binding and that the synthesis of amylose-like material can proceed at low levels without the binding of GBSSI to the polysaccharide matrix. Our results confirm that amylopectin synthesis is completely blocked in debranching-enzyme-defective mutants of C. reinhardtii.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Waxy wheat (Triticum aestivum L.) lacks the waxy protein, which is also known as granule-bound starch synthase I (GBSSI). The starch granules of waxy wheat endosperm and pollen do not contain amylose and therefore stain red-brown with iodine. However, we observed that starch from pericarp tissue of waxy wheat stained blue-black and contained amylose. Significantly higher starch synthase activity was detected in pericarp starch granules than in endosperm starch granules. A granule-bound protein that differed from GBSSI in molecular mass and isoelectric point was detected in the pericarp starch granules but not in granules from endosperm. This protein was designated GBSSII. The N-terminal amino acid sequence of GBSSII, although not identical to wheat GBSSI, showed strong homology to waxy proteins or GBSSIs of cereals and potato, and contained the motif KTGGL, which is the putative substrate-binding site of GBSSI of plants and of glycogen synthase of Escherichia coli. GBSSII cross-reacted specifically with antisera raised against potato and maize GBSSI. This study indicates that GBSSI and GBSSII are expressed in a tissue-specific manner in different organs, with GBSSII having an important function in amylose synthesis in the pericarp.