96 resultados para Alpha(2)delta Subunit
em National Center for Biotechnology Information - NCBI
Resumo:
To assess the role of altered alpha 2 beta 1 integrin expression in breast cancer, we expressed the alpha 2 beta 1 integrin de novo in a poorly differentiated mammary carcinoma that expressed no detectable alpha 2-integrin subunit. Expression of the alpha 2 beta 1 integrin resulted in a dramatic phenotypic alteration from a fibroblastoid, spindle-shaped, non-contact-inhibited, motile, and invasive cell to an epithelioid, polygonal-shaped, contact-inhibited, less motile, and less invasive cell. Although expression of the alpha 2 subunit did not alter adhesion to collagen, it profoundly altered cell spreading. Re-expression of the alpha 2 beta 1 integrin restored the ability to differentiate into gland-like structures in three-dimensional matrices and markedly reduced the in vivo tumorigenicity of the cells. These results indicate that the consequences of diminished alpha 2 beta 1-integrin expression in the development of breast cancer and, presumably, of other epithelial malignancies are increased tumorigenicity and loss of the differentiated epithelial phenotype.
Resumo:
Although only 44% identical to human karyopherin alpha 1, human karyopherin alpha 2 (Rch1 protein) substituted for human karyopherin alpha 1 (hSRP-1/NPI-1) in recognizing a standard nuclear localization sequence and karyopherin beta-dependent targeting to the nuclear envelope of digitonin-permeabilized cells. By immunofluorescence microscopy of methanol-fixed cells, karyopherin beta was localized to the cytoplasm and the nuclear envelope and was absent from the nuclear interior. Digitonin permeabilization of buffalo rat liver cells depleted their endogenous karyopherin beta. Recombinant karyopherin beta can bind directly to the nuclear envelope of digitonin-permeabilized cells at 0 degree C (docking reaction). In contrast, recombinant karyopherin alpha 1 or alpha 2 did not bind unless karyopherin beta was present. Likewise, in an import reaction (at 20 degrees C) with all recombinant transport factors (karyopherin alpha 1 or alpha 2, karyopherin beta, Ran, and p10) import depended on karyopherin beta. Localization of the exogenously added transport factors after a 30-min import reaction showed karyopherin beta at the nuclear envelope and karyopherin alpha 1 or alpha 2, Ran, and p10 in the nuclear interior. In an overlay assay with SDS/PAGE-resolved and nitrocellulose-transferred proteins of the nuclear envelope, 35S-labeled karyopherin beta bound to at least four peptide repeat-containing nucleoporins--Nup358, Nup214, Nup153, and Nup98.
Resumo:
Prolyl 4-hydroxylase (EC 1.14.11.2) catalyzes the posttranslational formation of 4-hydroxyproline in collagens. The vertebrate enzyme is an alpha 2 beta 2 tetramer, the beta subunit of which is a highly unusual multifunctional polypeptide, being identical to protein disulfide-isomerase (EC 5.3.4.1). We report here the cloning of a second mouse alpha subunit isoform, termed the alpha (II) subunit. This polypeptide consists of 518 aa and a signal peptide of 19 aa. The processed polypeptide is one residue longer than the mouse alpha (I) subunit (the previously known type), the cloning of which is also reported here. The overall amino acid sequence identity between the mouse alpha (II) and alpha (I) subunits is 63%. The mRNA for the alpha (II) subunit was found to be expressed in a variety of mouse tissues. When the alpha (II) subunit was expressed together with the human protein disulfide-isomerase/beta subunit in insect cells by baculovirus vectors, an active prolyl 4-hydroxylase was formed, and this protein appeared to be an alpha (II) 2 beta 2 tetramer. The activity of this enzyme was very similar to that of the human alpha (I) 2 beta 2 tetramer, and most of its catalytic properties were also highly similar, but it differed distinctly from the latter in that it was inhibited by poly(L-proline) only at very high concentrations. This property may explain why the type II enzyme was not recognized earlier, as an early step in the standard purification procedure for prolyl 4-hydroxylase is affinity chromatography on a poly(L-proline) column.
Resumo:
The recombinant human thyroid stimulating hormone (rhTSH) containing oligosaccharides terminated with NeuAc(alpha 2-3)Gal(beta 1-4)GlcNAc beta 1 showed higher in vivo activity and lower metabolic clearance rate (MCR) than pituitary human TSH (phTSH), which contains oligosaccharides terminating predominantly in SO(4)4GalNAc(beta 1-4)GlcNAc beta 1. To elucidate the relative contribution of the sulfated and sialylated carbohydrate chains of each subunit in the MCR and bioactivity of the hormone, the alpha and beta subunits of phTSH, rhTSH, and enzymatically desialylated rhTSH (asialo-rhTSH; asrhTSH) were isolated, their oligosaccharides were analyzed, and the respective subunits were dimerized in various combinations. The hybrids containing alpha subunit from phTSH or asrhTSH showed higher in vitro activity than those with alpha subunit from rhTSH, indicating that sialylation of alpha but not beta subunit attenuates the intrinsic activity of TSH. In contrast, hybrids with beta subunit from rhTSH displayed lower MCR compared to those with beta subunit from phTSH. The phTSH alpha-rhTSH beta hybrid had the highest in vivo bioactivity followed by rhTSH alpha-rhTSH beta, rhTSH alpha-phTSH beta, phTSH alpha-phTSH beta, and asrhTSH dimers. These differences indicated that hybrids with beta subunit from rhTSH displayed the highest in vivo activity and relatively low MCR, probably due to higher sialylation, more multiantennary structure, and/or the unique location of the beta-subunit oligosaccharide chain in the molecule. Thus, the N-linked oligosaccharides of the beta subunit of glycoprotein hormones have a more pronounced role than those from the alpha subunit in the metabolic clearance and thereby in the in vivo bioactivity. In contrast, the terminal residues of alpha-subunit oligosaccharides have a major impact on TSH intrinsic potency.
Resumo:
γ-Aminobutyric acid (GABA) type A receptors mediate fast inhibitory synaptic transmission and have been implicated in responses to sedative/hypnotic agents (including neuroactive steroids), anxiety, and learning and memory. Using gene targeting technology, we generated a strain of mice deficient in the δ subunit of the GABA type A receptors. In vivo testing of various behavioral responses revealed a strikingly selective attenuation of responses to neuroactive steroids, but not to other modulatory drugs. Electrophysiological recordings from hippocampal slices revealed a significantly faster miniature inhibitory postsynaptic current decay time in null mice, with no change in miniature inhibitory postsynaptic current amplitude or frequency. Learning and memory assessed with fear conditioning were normal. These results begin to illuminate the novel contributions of the δ subunit to GABA pharmacology and sedative/hypnotic responses and behavior and provide insights into the physiology of neurosteroids.
Resumo:
Homopolymers of alpha 2,8-linked N-acetylneuraminic acid [poly(alpha 2,8-Neu5Ac)] of the neural cell adhesion molecule NCAM have been shown to be temporally expressed during lung development and represent a marker for small cell lung carcinoma. We report the presence of a further polysialic acid in lung that consists of oligo/polymers of alpha 2,8-linked deaminoneuraminic acid residues [poly (alpha 2,8-KDN)], as detected with a monoclonal antibody in conjunction with a specific sialidase. Although the various cell types forming the bronchi, alveolar septs, and blood vessels were positive for poly (alpha 2,8-KDN) by immunohistochemistry, this polysialic acid was found on a single 150-kDa glycoprotein by immunoblot analysis. The poly(alpha 2,8-KDN)-bearing glycoprotein was not related to an NCAM protein based on immunochemical criteria. The expression of the poly (alpha 2,8-KDN) was developmentally regulated as evidenced by its gradual disappearance in the rat lung parenchyma commencing 1 week after birth. In adult lung the blood vessel endothelia and the smooth muscle fibers of both blood vessels and bronchi were positive but not the bronchial and alveolar epithelium. The poly (alpha 2,8-KDN)-bearing 150-kDa glycoprotein became reexpressed in various histological types of lung carcinomas and cell lines derived from them and represents a new oncodevelopmental antigen in lung.
Resumo:
mRNAs for acetylcholine receptor genes are highly concentrated in the endplate region of adult skeletal muscle largely as a result of a transcription restricted to the subneural nuclei. To identify the regulatory elements involved, we employed a DNA injection of a plasmid containing a fragment of the acetylcholine receptor delta-subunit gene promoter (positions -839 to +45) linked to the reporter gene lacZ with a nuclear localization signal. Injection of the wild-type construct into mouse leg muscles yielded preferential expression of the reporter gene in the synaptic region. Analysis of various mutant promoters resulted in the identification of a DNA element (positions -60 to -49), referred to as the N box, that plays a critical role in subneural expression. Disruption of this 12-bp element in the context of a mouse delta-subunit promoter from positions -839 to +45 gives widespread expression of the reporter gene throughout the entire muscle fiber, indicating that this element is a silencer that represses delta-subunit gene transcription in extrajunctional areas. On the other hand, this element inserted upstream of a heterologous basal promoter preferentially enhances expression in the endplate region. This element therefore regulates the restricted expression of the delta-subunit gene both as an enhancer at the endplate level and as a silencer in extrajunctional areas. Furthermore, gel-shift experiments with mouse muscle extracts reveal an activity that specifically binds the 6-bp sequence TTCCGG of this element, suggesting that a transcription factor(s) controls the expression of the delta-subunit gene via this element.
Resumo:
GDP-L-fucose:beta-D-galactoside alpha-2-L-fucosyltransferase (EC 2.4.1.69) is a key enzyme in the biosynthesis of fucosylated type 1 and 2 lactoseries structures, such as Lewis b and the H type 2 and Lewis Y, respectively, that are accumulated in colon adenocarcinoma. Analysis of the mRNA transcript level for the human H gene-encoded beta-D-galactoside alpha-2-L-fucosyltransferase revealed 40- and 340-fold increases in the mRNA levels in all adenocarcinomas and tumor cell lines, respectively, compared to normal colon mucosa where a low level of mRNA transcript was detected. A variable increase in mRNA transcript levels was observed in 50% of adenomatous polyps. Nucleotide sequence analysis of the protein coding region of the cDNAs derived from normal colon, adenoma, and colon adenocarcinoma revealed 100% homology, suggesting that there are no tumor-associated allelic variations within the H beta-D-galactoside alpha-2-L-fucosyltransferase cDNA. These results suggest that beta-D-galactoside alpha-2-L-fucosyltransferase expression highly correlates with malignant progression of colon adenocarcinoma.
Resumo:
Escherichia coli RNA polymerase (RNAP) alpha subunit serves as the initiator for RNAP assembly, which proceeds according to the pathway 2 alpha-->alpha 2-->alpha 2 beta-->alpha 2 beta beta'-->alpha 2 beta beta' sigma. In this work, we have used hydroxyl-radical protein footprinting to define determinants of alpha for interaction with beta, beta', and sigma. Our results indicate that amino acids 30-75 of alpha are protected from hydroxyl-radical-mediated proteolysis upon interaction with beta (i.e., in alpha 2 beta, alpha 2 beta beta', and alpha 2 beta beta' sigma), and amino acids 175-210 of alpha are protected from hydroxyl-radical-mediated proteolysis upon interaction with beta' (i.e., in alpha 2 beta beta' and alpha 2 beta beta' sigma). The protected regions are conserved in the alpha homologs of prokaryotic, eukaryotic, archaeal, and chloroplast RNAPs and contain sites of substitutions that affect RNAP assembly. We conclude that the protected regions define determinants of alpha for direct functional interaction with beta and beta'. The observed maximal magnitude of protection upon interaction with beta and the observed maximal magnitude of protection upon interaction with beta' both correspond to the expected value for complete protection of one of the two alpha protomers of RNAP (i.e., 50% protection). We propose that only one of the two alpha protomers of RNAP interacts with beta and that only one of the two alpha protomers of RNAP interacts with beta'.
Resumo:
We tested the hypothesis that increases in tumor necrosis factor alpha (TNF-alpha) induced by human immunodeficiency virus (HIV) are associated with the increases in slow-wave sleep seen in early HIV infection and the decrease with sleep fragmentation seen in advanced HIV infection. Nocturnal sleep disturbances and associated fatigue contribute to the disability of HIV infection. TNF-alpha causes fatigue in clinical use and promotes slow-wave sleep in animal models. With slow progress toward a vaccine and weak effects from current therapies, efforts are directed toward extending productive life of HIV-infected individuals and shortening the duration of disability in terminal illness. We describe previously unrecognized nocturnal cyclic variations in plasma levels of TNF-alpha in all subjects. In 6 of 10 subjects (1 control subject, 3 HIV-seropositive patients with CD4+ cell number > 400 cells per microliters, and 2 HIV-positive patients with CD4+ cell number < 400 cells per microliters), these fluctuations in TNF-alpha were coupled to the known rhythm of electroencephalogram delta amplitude (square root of power) during sleep. This coupling was not present in 3 HIV-positive subjects with CD4+ cell number < 400 cells per microliters and 1 control subject. In 5 HIV subjects with abnormally low CD4+ cell counts ( < 400 cells per microliters), the number of days since seroconversion correlated significantly with low correlation between TNF-alpha and delta amplitude. We conclude that a previously unrecognized normal, physiological coupling exists between TNF-alpha and delta amplitude during sleep and that the lessened likelihood of this coupling in progressive HIV infection may be important in understanding fatigue-related symptoms and disabilities.
Resumo:
Hippocampal pyramidal cells, receiving domain specific GABAergic inputs, express up to 10 different subunits of the gamma-aminobutyric acid type A (GABAA) receptor, but only 3 different subunits are needed to form a functional pentameric channel. We have tested the hypothesis that some subunits are selectively located at subsets of GABAergic synapses. The alpha 1 subunit has been found in most GABAergic synapses on all postsynaptic domains of pyramidal cells. In contrast, the alpha 2 subunit was located only in a subset of synapses on the somata and dendrites, but in most synapses on axon initial segments innervated by axo-axonic cells. The results demonstrate that molecular specialization in the composition of postsynaptic GABAA receptor subunits parallels GABAergic cell specialization in targeting synapses to a specific domain of postsynaptic cortical neurons.
Resumo:
A study was made of the effects of 5-hydroxytryptamine (5HT) on homomeric neuronal nicotinic receptors (nAcChoR) expressed in Xenopus oocytes after injection of cDNA encoding the wild-type chicken alpha(7) subunit. Acetylcholine (AcCho) elicited large currents (IAcCho) that were reduced by 5HT in a reversible and dose-dependent manner, with a half-inhibitory concentration (IC50) of 56 microM and a Hill coefficient (nH) of 1.2. The inhibition of IAcCho by 5HT was noncompetitive and voltage independent, a behavior incompatible with a channel blockade mechanism. 5HT alone did not elicit membrane currents in oocytes injected with the wild-type alpha(7) subunit cDNA. In contrast, 5HT elicited membrane currents (I5HT) in oocytes injected with cDNA encoding an alpha(7) mutant subunit with a threonine-for-leucine-247 substitution (L247T alpha(7)). I5HT was inhibited by the potent nicotinic receptor blockers alpha-bungarotoxin (100 nM) and methyllycaconitine (1 microM). Furthermore, the characteristics of I5HT, including its voltage dependence, were similar to those of IAcCho. The 5HT dose-I5HT response gave an apparent dissociation constant EC50 of 23.5 microM and a Hill coefficient nH of 1.7, which were not modified by the presence of AcCho. Similarly, the apparent affinity of L247T alpha(7) for AcCho as well as its cooperativity were not influenced by 5HT, indicating a lack of mutual interactions between 5HT and AcCho. These results show that 5HT is a potent noncompetitive antagonist of neuronal alpha(7) nAcChoR, but it becomes a noncompetitive agonist following mutation of the highly conserved leucine residue 247 located in the channel domain M2.
Resumo:
This study evaluated hippocampal inhibitory function and the level of expression of gamma-aminobutyric acid type A (GABAA) receptor mRNA in an in vivo model of epilepsy. Chronic recurrent limbic seizures were induced in rats using injections of pilocarpine. Electrophysiological studies performed on hippocampal slices prepared from control and epileptic animals 1 to 2 months after pilocarpine injections demonstrated a significant hyperexcitability in the epileptic animals. Reduced levels of mRNA expression for the alpha 2 and alpha 5 subunits of the GABAA receptors were evident in the CA1, CA2, and CA3 regions of the hippocampus of epileptic animals. No decrease in mRNA encoding alpha 1, beta 2, or gamma 2 GABAA receptor subunits was observed. In addition, no change in the mRNA levels of alpha CaM kinase II was seen. Selective decreases in mRNA expression did not correlate with neuronal cell loss. The results indicate that selective, long-lasting reduction of GABAA subunit mRNA expression and increased excitability, possibly reflecting loss of GABAergic inhibition, occur in an in vivo model of partial complex epilepsy.
Resumo:
Hyperacute rejection of a porcine organ by higher primates is initiated by the binding of xenoreactive natural antibodies of the recipient to blood vessels in the graft leading to complement activation. The majority of these antibodies recognize the carbohydrate structure Gal(alphal,3)Gal (gal epitope) present on cells of pigs. It is possible that the removal or lowering of the number of gal epitopes on the graft endothelium could prevent hyperacute rejection. The Gal(alpha1,3) Gal structure is formed by the enzyme Galbeta1,4GlcNAc3-alpha-D-galactosyltransferase [alpha(1,3)GT; EC 2.4.1.51], which transfers a galactose molecule to terminal N-acetyllactosamine (N-lac) present on various glycoproteins and glycolipids. The N-lac structure might be utilized as an acceptor by other glycosyltransferases such as Galbeta1,4GlcNAc 6-alpha-D-sialyltransferase [alpha(2,6)ST], Galbeta1,4GlcNAc 3-alpha-D-Sialyltransferase [alpha(2,3)ST], or Galbeta 2-alpha-L-fucosyltransferase [alpha(1,2)FT; EC 2.4.1.691, etc. In this report we describe the competition between alpha(1,2)FT and alpha(1,3)GT in cells in culture and the generation of transgenic mice and transgenic pigs that express alpha(1,2)Fr leading to synthesis of Fucalpha,2Galbeta- (H antigen) and a concomitant decrease in the level of Gal(alpha1,3)Gal. As predicted, this resulted in reduced binding of xenoreactive natural antibodies to endothelial cells of transgenic mice and protection from complement mediated lysis.
Resumo:
Modulation of muscle acetylcholine (AcCho) receptors (AcChoRs) by serotonin [5-hydroxytryptamine (5HT)] and other serotonergic compounds was studied in Xenopus laevis oocytes. Various combinations of alpha, beta, gamma, and delta subunit RNAs were injected into oocytes, and membrane currents elicited by AcCho were recorded under voltage clamp. Judging by the amplitudes of AcCho currents generated, the levels of functional receptor expression were: alpha beta gamma delta > alpha beta delta > alpha beta gamma > alpha gamma delta. The alpha beta gamma delta and alpha beta delta AcChoR Subtypes were strongly blocked by 5HT, whereas the alpha beta gamma receptor was blocked only slightly. The order of blocking potency of AcChoRs by 5HT was: alpha beta delta > alpha beta gamma delta > alpha beta gamma. 5HT receptor antagonists, such as methysergide and spiperone, were even more potent blockers of AcChoRs than 5HT but did not show much subunit selectivity. Blockage of alpha beta gamma delta and alpha beta delta receptors by 5HT was voltage-dependent, and the voltage dependence was abolished when the delta subunit was omitted. These findings may need to be taken into consideration when trying to elucidate the mode of action of many clinically important serotonergic compounds.