5 resultados para Allozyme

em National Center for Biotechnology Information - NCBI


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Whether phytophagous insects can speciate in sympatry when they shift and adapt to new host plants is a controversial question. One essential requirement for sympatric speciation is that disruptive selection outweighs gene flow between insect populations using different host plants. Empirical support for host-related selection (i.e., fitness trade-offs) is scant, however. Here, we test for host-dependent selection acting on apple (Malus pumila)- and hawthorn (Crataegus spp.)-infesting races of Rhagoletis pomonella (Diptera: Tephritidae). In particular, we examine whether the earlier fruiting phenology of apple trees favors pupae in deeper states of diapause (or with slower metabolisms/development rates) in the apple fly race. By experimentally lengthening the time period preceding winter, we exposed hawthorn race pupae to environmental conditions typically faced by apple flies. This exposure induced a significant genetic response at six allozyme loci in surviving hawthorn fly adults toward allele frequencies found in the apple race. The sensitivity of hawthorn fly pupae to extended periods of warm weather therefore selects against hawthorn flies that infest apples and helps to maintain the genetic integrity of the apple race by counteracting gene flow from sympatric hawthorn populations. Our findings confirm that postzygotic reproductive isolation can evolve as a pleiotropic consequence of host-associated adaptation, a central tenet of nonallopatric speciation. They also suggest that one reason for the paucity of reported fitness trade-offs is a failure to consider adequately costs associated with coordinating an insect’s life cycle with the phenology of its host plant.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Natural selection is one of the most fundamental processes in biology. However, there is still a controversy over the importance of selection in microevolution of molecular traits. Despite the general lack of data most authors hold the view that selection on molecular characters may be important, but at lower rates than selection on most phenotypic traits. Here we present evidence that natural selection may contribute substantially to molecular variation on a scale of meters only. In populations of the marine snail Littorina saxatilis living on exposed rocky shores, steep microclines in allele frequencies between splash and surf zone groups are present in the enzyme aspartate aminotransferase (allozyme locus Aat; EC. 2.6.1.1). We followed one population over 7 years, including a period of strong natural perturbation. The surf zone part of the population dominated by the allele Aat100 was suddenly eliminated by a bloom of a toxin-producing microflagellate. Downshore migration of splash zone snails with predominantly Aat120 alleles resulted in a drastic increase in surf zone frequency of Aat120, from 0.4 to 0.8 over 2 years. Over the next four to six generations, however, the frequency of Aat120 returned to the original value. We estimated the coefficient of selection of Aat120 in the surf zone to be about 0.4. Earlier studies show similar or even sharper Aat clines in other countries. Thus, we conclude that microclinal selection is an important evolutionary force in this system.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The genetic basis of spontaneous melanoma formation in spotted dorsal (Sd) Xiphophorus platyfish–swordtail hybrids has been studied for decades, and is adequately explained by a two-gene inheritance model involving a sex-linked oncogene, Xmrk, and an autosomal tumor suppressor, DIFF. The Xmrk oncogene encodes a receptor tyrosine kinase related to EGFR; the nature of the DIFF tumor suppressor gene is unknown. We analyzed the genetic basis of UV-B-induced melanoma formation in closely related, spotted side platyfish–swordtail hybrids, which carry a different sex-linked pigment pattern locus, Sp. We UV-irradiated spotted side Xiphophorus platyfish–swordtail backcross hybrids to induce melanomas at frequencies 6-fold higher than occur spontaneously in unirradiated control animals. To identify genetic determinants of melanoma susceptibility in this UV-inducible Xiphophorus model, we genotyped individual animals from control and UV-irradiated experimental regimes using allozyme and DNA restriction fragment length polymorphisms and tested for joint segregation of genetic markers with pigmentation phenotype and UV-induced melanoma formation. Joint segregation results show linkage of a CDKN2-like DNA polymorphism with UV-B-induced melanoma formation in these hybrids. The CDKN2-like polymorphism maps to Xiphophorus linkage group V and exhibits recombination fractions with ES1 and MDH2 allozyme markers consistent with previous localization of the DIFF tumor suppressor locus. Our results indicate that the CDKN2-like sequence we have cloned and mapped is a candidate for the DIFF tumor suppressor gene.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The genomic era revolutionized evolutionary biology. The enigma of genotypic-phenotypic diversity and biodiversity evolution of genes, genomes, phenomes, and biomes, reviewed here, was central in the research program of the Institute of Evolution, University of Haifa, since 1975. We explored the following questions. (i) How much of the genomic and phenomic diversity in nature is adaptive and processed by natural selection? (ii) What is the origin and evolution of adaptation and speciation processes under spatiotemporal variables and stressful macrogeographic and microgeographic environments? We advanced ecological genetics into ecological genomics and analyzed globally ecological, demographic, and life history variables in 1,200 diverse species across life, thousands of populations, and tens of thousands of individuals tested mostly for allozyme and partly for DNA diversity. Likewise, we tested thermal, chemical, climatic, and biotic stresses in several model organisms. Recently, we introduced genetic maps and quantitative trait loci to elucidate the genetic basis of adaptation and speciation. The genome–phenome holistic model was deciphered by the global regressive, progressive, and convergent evolution of subterranean mammals. Our results indicate abundant genotypic and phenotypic diversity in nature. The organization and evolution of molecular and organismal diversity in nature at global, regional, and local scales are nonrandom and structured; display regularities across life; and are positively correlated with, and partly predictable by, abiotic and biotic environmental heterogeneity and stress. Biodiversity evolution, even in small isolated populations, is primarily driven by natural selection, including diversifying, balancing, cyclical, and purifying selective regimes, interacting with, but ultimately overriding, the effects of mutation, migration, and stochasticity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Controversy still exists over the adaptive nature of variation of enzyme loci. In conifers, random amplified polymorphic DNAs (RAPDs) represent a class of marker loci that is unlikely to fall within or be strongly linked to coding DNA. We have compared the genetic diversity in natural populations of black spruce [Picea mariana (Mill.) B.S.P.] using genotypic data at allozyme loci and RAPD loci as well as phenotypic data from inferred RAPD fingerprints. The genotypic data for both allozymes and RAPDs were obtained from at least six haploid megagametophytes for each of 75 sexually mature individuals distributed in five populations. Heterozygosities and population fixation indices were in complete agreement between allozyme loci and RAPD loci. In black spruce, it is more likely that the similar levels of variation detected at both enzyme and RAPD loci are due to such evolutionary forces as migration and the mating system, rather than to balancing selection and overdominance. Furthermore, we show that biased estimates of expected heterozygosity and among-population differentiation are obtained when using allele frequencies derived from dominant RAPD phenotypes.