7 resultados para Allopsoroptoides galli
em National Center for Biotechnology Information - NCBI
Resumo:
We have investigated the relationships between the apical sorting mechanism using lipid rafts and the soluble N-ethyl maleimide-sensitive factor attachment protein receptor (SNARE) machinery, which is involved in membrane docking and fusion. We first confirmed that anti-alpha-SNAP antibodies inhibit the apical pathway in Madin– Darby canine kidney (MDCK) cells; in addition, we report that a recombinant SNAP protein stimulates the apical transport whereas a SNAP mutant inhibits this transport step. Based on t-SNARE overexpression experiments and the effect of botulinum neurotoxin E, syntaxin 3 and SNAP-23 have been implicated in apical membrane trafficking. Here, we show in permeabilized MDCK cells that antisyntaxin 3 and anti-SNAP-23 antibodies lower surface delivery of an apical reporter protein. Moreover, using a similar approach, we show that tetanus toxin-insensitive, vesicle-associated membrane protein (TI-VAMP; also called VAMP7), a recently described apical v-SNARE, is involved. Furthermore, we show the presence of syntaxin 3 and TI-VAMP in isolated apical carriers. Polarized apical sorting has been postulated to be mediated by the clustering of apical proteins into dynamic sphingolipid-cholesterol rafts. We provide evidence that syntaxin 3 and TI-VAMP are raft-associated. These data support a raft-based mechanism for the sorting of not only apically destined cargo but also of SNAREs having functions in apical membrane-docking and fusion events.
Resumo:
Transporters for the biogenic amines dopamine, norepinephrine, epinephrine and serotonin are largely responsible for transmitter inactivation after release. They also serve as high-affinity targets for a number of clinically relevant psychoactive agents, including antidepressants, cocaine, and amphetamines. Despite their prominent role in neurotransmitter inactivation and drug responses, we lack a clear understanding of the permeation pathway or regulation mechanisms at the single transporter level. The resolution of radiotracer-based flux techniques limits the opportunities to dissect these problems. Here we combine patch-clamp recording techniques with microamperometry to record the transporter-mediated flux of norepinephrine across isolated membrane patches. These data reveal voltage-dependent norepinephrine flux that correlates temporally with antidepressant-sensitive transporter currents in the same patch. Furthermore, we resolve unitary flux events linked with bursts of transporter channel openings. These findings indicate that norepinephrine transporters are capable of transporting neurotransmitter across the membrane in discrete shots containing hundreds of molecules. Amperometry is used widely to study neurotransmitter distribution and kinetics in the nervous system and to detect transmitter release during vesicular exocytosis. Of interest regarding the present application is the use of amperometry on inside-out patches with synchronous recording of flux and current. Thus, our results further demonstrate a powerful method to assess transporter function and regulation.
Resumo:
The importance of soluble N-ethyl maleimide (NEM)-sensitive fusion protein (NSF) attachment protein (SNAP) receptors (SNAREs) in synaptic vesicle exocytosis is well established because it has been demonstrated that clostridial neurotoxins (NTs) proteolyze the vesicle SNAREs (v-SNAREs) vesicle-associated membrane protein (VAMP)/brevins and their partners, the target SNAREs (t-SNAREs) syntaxin 1 and SNAP25. Yet, several exocytotic events, including apical exocytosis in epithelial cells, are insensitive to numerous clostridial NTs, suggesting the presence of SNARE-independent mechanisms of exocytosis. In this study we found that syntaxin 3, SNAP23, and a newly identified VAMP/brevin, tetanus neurotoxin (TeNT)-insensitive VAMP (TI-VAMP), are insensitive to clostridial NTs. In epithelial cells, TI-VAMP–containing vesicles were concentrated in the apical domain, and the protein was detected at the apical plasma membrane by immunogold labeling on ultrathin cryosections. Syntaxin 3 and SNAP23 were codistributed at the apical plasma membrane where they formed NEM-dependent SNARE complexes with TI-VAMP and cellubrevin. We suggest that TI-VAMP, SNAP23, and syntaxin 3 can participate in exocytotic processes at the apical plasma membrane of epithelial cells and, more generally, domain-specific exocytosis in clostridial NT-resistant pathways.
Resumo:
One intradermal injection of incomplete Freund’s adjuvant-oil induces a T cell-mediated inflammatory joint disease in DA rats. Susceptibility genes for oil-induced arthritis (OIA) are located both within and outside the major histocompatibility complex (MHC, Oia1). We have searched for disease-linked non-MHC loci in an F2 intercross between DA rats and MHC-identical but arthritis-resistant LEW.1AV1 rats. A genome-wide scan with microsatellite markers revealed two major chromosome regions that control disease incidence and severity: Oia2 on chromosome 4 (P = 4 × 10−13) and Oia3 on chromosome 10 (P = 1 × 10−6). All animals homozygous for DA alleles at both loci developed severe arthritis, whereas all those homozygous for LEW.1AV1 alleles were resistant. These results have general implications for situations where nonspecific activation of the immune system (e.g., incomplete Freund’s adjuvant-oil) causes inflammation and disease, either alone or in conjunction with specific antigens. They may also provide clues to the etiology of inflammatory diseases in humans, including rheumatoid arthritis.
Resumo:
During receptor mediated endocytosis, at least a fraction of recycling cargo typically accumulates in a pericentriolar cluster of tubules and vesicles. However, it is not clear if these endosomal structures are biochemically distinct from the early endosomes from which they are derived. To better characterize this pericentriolar endosome population, we determined the distribution of two endogenous proteins known to be functionally involved in receptor recycling [Rab4, cellubrevin (Cbvn)] relative to the distribution of a recycling ligand [transferrin (Tfn)] as it traversed the endocytic pathway. Shortly after internalization, Tfn entered a population of early endosomes that contained both Rab4 and Cbvn, demonstrated by triple label immunofluorescence confocal microscopy. Tfn then accumulated in the pericentriolar cluster of recycling vesicles (RVs). However, although these pericentriolar endosomes contained Cbvn, they were strikingly depleted of Rab4. The ability of internalized Tfn to reach the Rab4-negative population was not blocked by nocodazole, although the characteristic pericentriolar location of the population was not maintained in the absence of microtubules. Similarly, Rab4-positive and -negative populations remained distinct in cells treated with brefeldin A, with only Rab4-positive elements exhibiting the extended tubular morphology induced by the drug. Thus, at least with respect to Rab4 distribution, the pathway of Tfn receptor recycling consists of at least two biochemically and functionally distinct populations of endosomes, a Rab4-positive population of early endosomes to which incoming Tfn is initially delivered and a Rab4-negative population of recycling vesicles that transiently accumulates Tfn on its route back to the plasma membrane.
Resumo:
Neurotransmitter transporters couple to existing ion gradients to achieve reuptake of transmitter into presynaptic terminals. For coupled cotransport, substrates and ions cross the membrane in fixed stoichiometry. This is in contrast to ion channels, which carry an arbitrary number of ions depending on the channel open time. Members of the gamma-aminobutyric acid transporter gene family presumably function with fixed stoichiometry in which a set number of ions cotransport with one transmitter molecule. Here we report channel-like events from a presumably fixed stoichiometry [norepinephrine (NE)+, Na+, and Cl-], human NE (hNET) in the gamma-aminobutyric acid transporter gene family. These events are stimulated by NE and by guanethidine, an hNET substrate, and they are blocked by cocaine and the antidepressant desipramine. Voltage-clamp data combined with NE uptake data from these same cells indicate that hNETs have two functional modes of conduction: a classical transporter mode (T-mode) and a novel channel mode (C-mode). Both T-mode and C-mode are gated by the same substrates and antagonized by the same blockers. T-mode is putatively electrogenic because the transmitter and cotransported ions sum to one net charge. However, C-mode carries virtually all of the transmitter-induced current, even though it occurs with low probability. This is because each C-mode opening transports hundreds of charges per event. The existence of a channel mode of conduction in a previously established fixed-stoichiometry transporter suggests the appearance of an aqueous pore through the transporter protein during the transport cycle and may have significance for transporter regulation.
Resumo:
The experiments reported here were designed to test the hypothesis that the two-electron quinone reductase DT-diaphorase [NAD(P)H:(quinone-acceptor) oxidoreductase, EC 1.6.99.2] functions to maintain membrane-bound coenzyme Q (CoQ) in its reduced antioxidant state, thereby providing protection from free radical damage. DT-diaphorase was isolated and purified from rat liver cytosol, and its ability to reduce several CoQ homologs incorporated into large unilamellar vesicles was demonstrated. Addition of NADH and DT-diaphorase to either large unilamellar or multilamellar vesicles containing homologs of CoQ, including CoQ9 and CoQ10, resulted in the essentially complete reduction of the CoQ. The ability of DT-diaphorase to maintain the reduced state of CoQ and protect membrane components from free radical damage as lipid peroxidation was tested by incorporating either reduced CoQ9 or CoQ10 and the lipophylic azoinitiator 2,2'-azobis(2,4-dimethylvaleronitrile) into multilamellar vesicles in the presence of NADH and DT-diaphorase. The presence of DT-diaphorase prevented the oxidation of reduced CoQ and inhibited lipid peroxidation. The interaction between DT-diaphorase and CoQ was also demonstrated in an isolated rat liver hepatocyte system. Incubation with adriamycin resulted in mitochondrial membrane damage as measured by membrane potential and the release of hydrogen peroxide. Incorporation of CoQ10 provided protection from adriamycin-induced mitochondrial membrane damage. The incorporation of dicoumarol, a potent inhibitor of DT-diaphorase, interfered with the protection provided by CoQ. The results of these experiments provide support for the hypothesis that DT-diaphorase functions as an antioxidant in both artificial membrane and natural membrane systems by acting as a two-electron CoQ reductase that forms and maintains the antioxidant form of CoQ. The suggestion is offered that DT-diaphorase was selected during evolution to perform this role and that its conversion of xenobiotics and other synthetic molecules is secondary and coincidental.