14 resultados para Agroindustrial by-product
em National Center for Biotechnology Information - NCBI
Resumo:
Enzymatic transformations of macromolecular substrates such as DNA repair enzyme/DNA transformations are commonly interpreted primarily by active-site functional-group chemistry that ignores their extensive interfaces. Yet human uracil–DNA glycosylase (UDG), an archetypical enzyme that initiates DNA base-excision repair, efficiently excises the damaged base uracil resulting from cytosine deamination even when active-site functional groups are deleted by mutagenesis. The 1.8-Å resolution substrate analogue and 2.0-Å resolution cleaved product cocrystal structures of UDG bound to double-stranded DNA suggest enzyme–DNA substrate-binding energy from the macromolecular interface is funneled into catalytic power at the active site. The architecturally stabilized closing of UDG enforces distortions of the uracil and deoxyribose in the flipped-out nucleotide substrate that are relieved by glycosylic bond cleavage in the product complex. This experimentally defined substrate stereochemistry implies the enzyme alters the orientation of three orthogonal electron orbitals to favor electron transpositions for glycosylic bond cleavage. By revealing the coupling of this anomeric effect to a delocalization of the glycosylic bond electrons into the uracil aromatic system, this structurally implicated mechanism resolves apparent paradoxes concerning the transpositions of electrons among orthogonal orbitals and the retention of catalytic efficiency despite mutational removal of active-site functional groups. These UDG/DNA structures and their implied dissociative excision chemistry suggest biology favors a chemistry for base-excision repair initiation that optimizes pathway coordination by product binding to avoid the release of cytotoxic and mutagenic intermediates. Similar excision chemistry may apply to other biological reaction pathways requiring the coordination of complex multistep chemical transformations.
Resumo:
Oxidation of d-ribulose-1,5-bisphosphate (ribulose-P2) during synthesis and/or storage produces d-glycero-2,3-pentodiulose-1,5-bisphosphate (pentodiulose-P2), a potent slow, tight-binding inhibitor of spinach (Spinacia oleracea L.) ribulose-P2 carboxylase/oxygenase (Rubisco). Differing degrees of contamination with pentodiulose-P2 caused the decline in Rubisco activity seen during Rubisco assay time courses to vary between different preparations of ribulose-P2. With some ribulose-P2 preparations, this compound can be the dominant cause of the decline, far exceeding the significance of the catalytic by-product, d-xylulose-1,5-bisphosphate. Unlike xylulose-1,5-bisphosphate, pentodiulose-P2 did not appear to be a significant by-product of catalysis by wild-type Rubisco at saturating CO2 concentration. It was produced slowly during frozen storage of ribulose-P2, even at low pH, more rapidly in Rubisco assay buffers at room temperature, and particularly rapidly on deliberate oxidation of ribulose-P2 with Cu2+. Its formation was prevented by the exclusion of transition metals and O2. Pentodiulose-P2 was unstable and decayed to a variety of other less-inhibitory compounds, particularly in the presence of some buffers. However, it formed a tight, stable complex with carbamylated spinach Rubisco, which could be isolated by gel filtration, presumably because its structure mimics that of the enediol intermediate of Rubisco catalysis. Rubisco catalyzes the cleavage of pentodiulose-P2 by H2O2, producing P-glycolate.
Resumo:
Pulmonary neuroepithelial bodies (NEB) are widely distributed throughout the airway mucosa of human and animal lungs. Based on the observation that NEB cells have a candidate oxygen sensor enzyme complex (NADPH oxidase) and an oxygen-sensitive K+ current, it has been suggested that NEB may function as airway chemoreceptors. Here we report that mRNAs for both the hydrogen peroxide sensitive voltage gated potassium channel subunit (KH2O2) KV3.3a and membrane components of NADPH oxidase (gp91phox and p22phox) are coexpressed in the NEB cells of fetal rabbit and neonatal human lungs. Using a microfluorometry and dihydrorhodamine 123 as a probe to assess H2O2 generation, NEB cells exhibited oxidase activity under basal conditions. The oxidase in NEB cells was significantly stimulated by exposure to phorbol esther (0.1 μM) and inhibited by diphenyliodonium (5 μM). Studies using whole-cell voltage clamp showed that the K+ current of cultured fetal rabbit NEB cells exhibited inactivating properties similar to KV3.3a transcripts expressed in Xenopus oocyte model. Exposure of NEB cells to hydrogen peroxide (H2O2, the dismuted by-product of the oxidase) under normoxia resulted in an increase of the outward K+ current indicating that H2O2 could be the transmitter modulating the O2-sensitive K+ channel. Expressed mRNAs or orresponding protein products for the NADPH oxidase membrane cytochrome b as well as mRNA encoding KV3.3a were identified in small cell lung carcinoma cell lines. The studies presented here provide strong evidence for an oxidase-O2 sensitive potassium channel molecular complex operating as an O2 sensor in NEB cells, which function as chemoreceptors in airways and in NEB related tumors. Such a complex may represent an evolutionary conserved biochemical link for a membrane bound O2-signaling mechanism proposed for other cells and life forms.
Resumo:
In this paper, a new way to think about, and to construct, pairwise as well as multiple alignments of DNA and protein sequences is proposed. Rather than forcing alignments to either align single residues or to introduce gaps by defining an alignment as a path running right from the source up to the sink in the associated dot-matrix diagram, we propose to consider alignments as consistent equivalence relations defined on the set of all positions occurring in all sequences under consideration. We also propose constructing alignments from whole segments exhibiting highly significant overall similarity rather than by aligning individual residues. Consequently, we present an alignment algorithm that (i) is based on segment-to-segment comparison instead of the commonly used residue-to-residue comparison and which (ii) avoids the well-known difficulties concerning the choice of appropriate gap penalties: gaps are not treated explicity, but remain as those parts of the sequences that do not belong to any of the aligned segments. Finally, we discuss the application of our algorithm to two test examples and compare it with commonly used alignment methods. As a first example, we aligned a set of 11 DNA sequences coding for functional helix-loop-helix proteins. Though the sequences show only low overall similarity, our program correctly aligned all of the 11 functional sites, which was a unique result among the methods tested. As a by-product, the reading frames of the sequences were identified. Next, we aligned a set of ribonuclease H proteins and compared our results with alignments produced by other programs as reported by McClure et al. [McClure, M. A., Vasi, T. K. & Fitch, W. M. (1994) Mol. Biol. Evol. 11, 571-592]. Our program was one of the best scoring programs. However, in contrast to other methods, our protein alignments are independent of user-defined parameters.
Resumo:
Retinoids serve two main functions in biology: retinaldehyde forms the chromophore bound to opsins, and retinoic acid (RA) is the activating ligand of transcription factors. These two functions are linked in the vertebrate eye: we describe here that illumination of the retina results in an increase in RA synthesis, as detected with a RA bioassay and by HPLC. The synthesis is mediated by retinaldehyde dehydrogenases which convert some of the chromophore all-trans retinaldehyde, released from bleached rhodopsin, into RA. As the eye contains high levels of retinaldehyde dehydrogenases, and as the oxidation of retinaldehyde is an irreversible reaction, RA production has to be considered an unavoidable by-product of light. Through RA synthesis, light can thus directly influence gene transcription in the eye, which provides a plausible mechanism for light effects that cannot be explained by electric activity. Whereas the function of retinaldehyde as chromophore is conserved from bacteria to mammals, RA-mediated transcription is fully evolved only in vertebrates. Invertebrates differ from vertebrates in the mechanism of chromophore regeneration: while in the invertebrate visual cycle the chromophore remains bound, it is released as free all-trans retinaldehyde from illuminated vertebrate rhodopsin. RA synthesis occurring as corollary of dark regeneration in the vertebrate visual cycle may have given rise to the expansion of RA-mediated transcriptional regulation.
Resumo:
An analysis of the x-ray structure of homodimeric avian farnesyl diphosphate synthase (geranyltransferase, EC 2.5.1.10) coupled with information about conserved amino acids obtained from a sequence alignment of 35 isoprenyl diphosphate synthases that synthesize farnesyl (C15), geranylgeranyl (C20), and higher chain length isoprenoid diphosphates suggested that the side chains of residues corresponding to F112 and F113 in the avian enzyme were important for determining the ultimate length of the hydrocarbon chains. This hypothesis was supported by site-directed mutagenesis to transform wild-type avian farnesyl diphosphate synthase (FPS) into synthases capable of producing geranylgeranyl diphosphate (F112A), geranylfarnesyl (C25) diphosphate (F113S), and longer chain prenyl diphosphates (F112A/F113S). An x-ray analysis of the structure of the F112A/F113S mutant in the apo state and with allylic substrates bound produced the strongest evidence that these mutations caused the observed change in product specificity by directly altering the size of the binding pocket for the growing isoprenoid chain in the active site of the enzyme. The proposed binding pocket in the apo mutant structure was increased in depth by 5.8 Å as compared with that for the wild-type enzyme. Allylic diphosphates were observed in the holo structures, bound through magnesium ions to the aspartates of the first of two conserved aspartate-rich sequences (D117–D121), with the hydrocarbon tails of all the ligands growing down the hydrophobic pocket toward the mutation site. A model was constructed to show how the growth of a long chain prenyl product may proceed by creation of a hydrophobic passageway from the FPS active site to the outside surface of the enzyme.
Resumo:
Proliferating cell nuclear antigen (PCNA), a processivity factor for DNA polymerases δ and ɛ, is involved in DNA replication as well as in diverse DNA repair pathways. In quiescent cells, UV light-induced bulky DNA damage triggers the transition of PCNA from a soluble to an insoluble chromatin-bound form, which is intimately associated with the repair synthesis by polymerases δ and ɛ. In this study, we investigated the efficiency of PCNA complex formation in response to ionizing radiation-induced DNA strand breaks in normal and radiation-sensitive Ataxia telangiectasia (AT) cells by immunofluorescence and western blot techniques. Exposure of normal cells to γ-rays rapidly triggered the formation of PCNA foci in a dose-dependent manner in the nuclei and the PCNA foci (40–45%) co-localized with sites of repair synthesis detected by bromodeoxyuridine labeling. The chromatin-bound PCNA gradually declined with increasing post-irradiation times and almost reached the level of unirradiated cells by 6 h. The PCNA foci formed after γ-irradiation was resistant to high salt extraction and the chromatin association of PCNA was lost after DNase I digestion. Interestingly, two radiosensitive primary fibroblast cell lines, derived from AT patients harboring homozygous mutations in the ATM gene, displayed an efficient PCNA redistribution after γ-irradiation. We also analyzed the PCNA complex induced by a radiomimetic agent, Bleomycin (BLM), which produces predominantly single- and double-strand DNA breaks. The efficiency and the time course of PCNA complex induced by BLM were identical in both normal and AT cells. Our study demonstrates for the first time that the ATM gene product is not required for PCNA complex assembly in response to DNA strand breaks. Additionally, we observed an increased interaction of PCNA with the Ku70 and Ku80 heterodimer after DNA damage, suggestive of a role for PCNA in the non-homologous end-joining repair pathway of DNA strand breaks.
Resumo:
8-Oxoguanine (8-oxoG), induced by reactive oxygen species and arguably one of the most important mutagenic DNA lesions, is prone to further oxidation. Its one-electron oxidation products include potentially mutagenic guanidinohydantoin (Gh) and spiroiminodihydantoin (Sp) because of their mispairing with A or G. All three oxidized base-specific DNA glycosylases of Escherichia coli, namely endonuclease III (Nth), 8-oxoG-DNA glycosylase (MutM) and endonuclease VIII (Nei), excise Gh and Sp, when paired with C or G in DNA, although Nth is less active than the other two. MutM prefers Sp and Gh paired with C (kcat/Km of 0.24–0.26 min–1 nM–1), while Nei prefers G over C as the complementary base (kcat/Km – 0.15–0.17 min–1 nM–1). However, only Nei efficiently excises these paired with A. MutY, a 8-oxoG·A(G)-specific A(G)-DNA glycosylase, is inactive with Gh(Sp)·A/G-containing duplex oligonucleotide, in spite of specific affinity. It inhibits excision of lesions by MutM from the Gh·G or Sp·G pair, but not from Gh·C and Sp·C pairs. In contrast, MutY does not significantly inhibit Nei for any Gh(Sp) base pair. These results suggest a protective function for MutY in preventing mutation as a result of A (G) incorporation opposite Gh(Sp) during DNA replication.
Resumo:
The VHL tumor suppressor gene is inactivated in patients with von Hippel-Lindau disease and in most sporadic clear cell renal carcinomas. Although VHL protein function remains unclear, VHL does interact with the elongin BC subunits in vivo and regulates RNA polymerase II elongation activity in vitro by inhibiting formation of the elongin ABC complex. Expression of wild-type VHL in renal carcinoma cells with inactivated endogenous VHL resulted in unaltered in vitro cell growth and decreased vascular endothelial growth factor (VEGF) mRNA expression and responsiveness to serum deprivation. VEGF is highly expressed in many tumors, including VHL-associated and sporadic renal carcinomas, and it stimulates neoangiogenesis in growing solid tumors. Despite 5-fold differences in VEGF mRNA levels, VHL overexpression did not affect VEGF transcription initiation or elongation as would have been suggested by VHL-elongin association. These results suggest that VHL regulates VEGF expression at a post-transcriptional level and that VHL inactivation in target cells causes a loss of VEGF suppression, leading to formation of a vascular stroma.
Resumo:
MRP is a recently isolated ATP-binding cassette family transporter. We previously reported transfection studies that established that MRP confers multidrug resistance [Kruh, G. D., Chan, A., Myers, K., Gaughan, K., Miki, T. & Aaronson, S. A. (1994) Cancer Res. 54, 1649-1652] and that expression of MRP is associated with enhanced cellular efflux of lipophilic cytotoxic agents [Breuninger, L. M., Paul, S., Gaughan, K., Miki, T., Chan, A., Aaronson, S. A. & Kruh, G. D. (1995) Cancer Res. 55, 5342-5347]. To examine the biochemical mechanism by which MRP confers multidrug resistance, drug uptake experiments were performed using inside-out membrane vesicles prepared from NIH 3T3 cells transfected with an MRP expression vector. ATP-dependent transport was observed for several lipophilic cytotoxic agents including daunorubicin, etoposide, and vincristine, as well as for the glutathione conjugate leukotriene C4 (LTC4). However, only marginally increased uptake was observed for vinblastine and Taxol. Drug uptake was osmotically sensitive and saturable with regard to substrate concentration, with Km values of 6.3 microM, 4.4 microM, 4.2 microM, 35 nM, and 38 microM, for daunorubicin, etoposide, vincristine, LTC4, and ATP, respectively. The broad substrate specificity of MRP was confirmed by the observation that daunorubicin transport was competitively inhibited by reduced and oxidized glutathione, the glutathione conjugates S-(p-azidophenacyl)-glutathione (APA-SG) and S-(2,4-dinitrophenyl)glutathione (DNP-SG), arsenate, and the LTD4 antagonist MK571. This study establishes that MRP pumps unaltered lipophilic cytotoxic drugs, and suggests that this activity is an important mechanism by which the transporter confers multidrug resistance. The present study also indicates that the substrate specificity of MRP is overlapping but distinct from that of P-glycoprotein, and includes both the neutral or mildly cationic natural product cytotoxic drugs and the anionic products of glutathione conjugation. The widespread expression of MRP in tissues, combined with its ability to transport both lipophilic xenobiotics and the products of phase II detoxification, indicates that the transporter represents a widespread and remarkably versatile cellular defense mechanism.
Resumo:
The 4.6-kb region 5'-upstream from the gene encoding a cobalt-containing and amide-induced high molecular mass-nitrile hydratase (H-NHase) from Rhodococcus rhodochrous J1 was found to be required for the expression of the H-NHase gene with a host-vector system in a Rhodococcus strain. Sequence analysis has revealed that there are at least five open reading frames (H-ORF1 approximately 5) in addition to H-NHase alpha- and beta-subunit genes. Deletion of H-ORF1 and H-ORF2 resulted in decrease of NHase activity, suggesting a positive regulatory role of both ORFs in the expression of the H-NHase gene. H-ORF1 showed significant similarity to a regulatory protein, AmiC, which is involved in regulation of amidase expression by binding an inducer amide in Pseudomonas aeruginosa. H-ORF4, which has been found to be uninvolved in regulation of H-NHase expression by enzyme assay for its deletion transformant and Northern blot analysis for R. rhodochrous J1, showed high similarity to transposases from insertion sequences of several bacteria. Determination of H-NHase activity and H-NHase mRNA levels in R. rhodochrous J1 has indicated that the expression of the H-NHase gene is regulated by an amide at the transcriptional level. These findings suggest the participation of H-ORF4 (IS1164) in the organization of the H-NHase gene cluster and the involvement of H-ORF1 in unusual induction mechanism, in which H-NHase is formed by amides (the products in the NHase reaction), but not by nitriles (the substrates).
Resumo:
The product of the von Hippel-Lindau (VHL) tumor suppressor gene, the gene inactivated in VHL disease and in sporadic clear-cell renal carcinomas, has recently been shown to have as a functional target the transcription elongation complex, elongin (also called SIII). Here it is shown that there is a tightly regulated, cell-density-dependent transport of VHL into and/or out of the nucleus. In densely grown cells, the VHL protein is predominantly in the cytoplasm, whereas in sparse cultures, most of the protein can be detected in the nucleus. We have identified a putative nuclear localization signal in the first 60 and first 28 amino acids of the human and rat VHL protein, respectively. Sequences in the C-terminal region of the VHL protein may also be required for localization to the cytosol. These findings provide the initial indication of a novel cell density-dependent pathway that is responsible for the regulation of VHL cellular localization.
Resumo:
Invariant chain (Ii) is an intracellular type II transmembrane glycoprotein that is associated with major histocompatibility complex class II molecules during biosynthesis. Ii exists in two alternatively spliced forms, p31 and p41. Both p31 and p41 facilitate folding of class II molecules, promote egress from the endoplasmic reticulum, prevent premature peptide binding, and enhance localization to proteolytic endosomal compartments that are thought to be the sites for Ii degradation, antigen processing, and class II-peptide association. In spite of the dramatic and apparently equivalent effects that p31 and p41 have on class II biosynthesis, the ability of invariant chain to enhance antigen presentation to T cells is mostly restricted to p41. Here we show that degradation of Ii leads to the generation of a 12-kDa amino-terminal fragment that in p41-positive, but not in p31-positive, cells remains associated with class II molecules for an extended time. Interestingly, we find that coexpression of the two isoforms results in a change in the pattern of p31 degradation such that endosomal processing of p31 also leads to extended association of a similar 12-kDa fragment with class II molecules. These data raise the possibility that p41 may have the ability to impart its pattern of proteolytic processing on p31 molecules expressed in the same cells. This would enable a small number of p41 molecules to modify the post-translational transport and/or processing of an entire cohort of class II-Ii complexes in a manner that could account for the unique ability of p41 to enhance antigen presentation.
Resumo:
Of the microsomal P450 cytochromes, the ethanol-inducible isoform, P450 2E1, is believed to be predominant in leading to oxidative damage, including the generation of radical species that contribute to lipid peroxidation, and in the reductive beta-scission of lipid hydroperoxides to give hydrocarbons and aldehydes. In the present study, the sensitivity of a series of P450s to trans-4-hydroxy-2-nonenal (HNE), a known toxic product of membrane lipid peroxidation, was determined. After incubation of a purified cytochrome with HNE, the other components of the reconstituted system (NADPH-cytochrome P450 reductase, phosphatidylcholine, and NADPH) were added, and the rate of oxygenation of 1-phenylethanol to yield acetophenone was assayed. Inactivation occurs in a time-dependent and HNE concentration-dependent manner, with P450s 2E1 and 1A1 being the most sensitive, followed by isoforms 1A2, 3A6, and 2B4. At an HNE concentration of 0.24 microM, which was close to the micromolar concentration of the enzyme, four of the isoforms were significantly inhibited, but not P450 2B4. In other experiments, the reductase was shown to be only relatively weakly inactivated by HNE. P450s 2E1 and 2B4 in microsomal membranes from animals induced with acetone or phenobarbital, respectively, are as readily inhibited as the purified forms. Evidence was obtained that the P450 heme is apparently not altered and the sulfur ligand is not displaced, that substrate protects against HNE, and that the inactivation is reversed upon dialysis. Higher levels of reductase or substrate do not restore the activity of inhibited P450 in the catalytic assay. Our results suggest that the observed inhibition of the various P450s is of sufficient magnitude to cause significant changes in the metabolism of foreign compounds such as drugs and chemical carcinogens by the P450 oxygenase system at HNE concentrations that occur in biological membranes. In view of the known activities of P450 2E1 in generating lipid hydroperoxides and in their beta-scission, its inhibition by this product of membrane peroxidation may provide a negative regulatory function.