2 resultados para Affine Homography
em National Center for Biotechnology Information - NCBI
Resumo:
Symmetries have played an important role in a variety of problems in geology and geophysics. A large fraction of studies in mineralogy are devoted to the symmetry properties of crystals. In this paper, however, the emphasis will be on scale-invariant (fractal) symmetries. The earth’s topography is an example of both statistically self-similar and self-affine fractals. Landforms are also associated with drainage networks, which are statistical fractal trees. A universal feature of drainage networks and other growth networks is side branching. Deterministic space-filling networks with side-branching symmetries are illustrated. It is shown that naturally occurring drainage networks have symmetries similar to diffusion-limited aggregation clusters.
Resumo:
A hyperplane arrangement is a finite set of hyperplanes in a real affine space. An especially important arrangement is the braid arrangement, which is the set of all hyperplanes xi - xj = 1, 1 = i < j = n, in Rn. Some combinatorial properties of certain deformations of the braid arrangement are surveyed. In particular, there are unexpected connections with the theory of interval orders and with the enumeration of trees. For instance, the number of labeled interval orders that can be obtained from n intervals I1,..., In of generic lengths is counted. There is also discussed an arrangement due to N. Linial whose number of regions is the number of alternating (or intransitive) trees, as defined by Gelfand, Graev, and Postnikov [Gelfand, I. M., Graev, M. I., and Postnikov, A. (1995), preprint]. Finally, a refinement is given, related to counting labeled trees by number of inversions, of a result of Shi [Shi, J.-Y. (1986), Lecture Notes in Mathematics, no. 1179, Springer-Verlag] that a certain deformation of the braid arrangement has (n + 1)n-1 regions.