9 resultados para Adaptive Routing of Information Flows

em National Center for Biotechnology Information - NCBI


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Diverse roles in cellular functions have been ascribed to nitric oxide (NO), and its involvement in induction of long-term depression in cerebellar Purkinje cells has been demonstrated. Manipulations of NO concentration or its synthesis in cerebellar tissues therefore provide a means for investigating roles of NO in cerebellar functions at both cellular and behavioral levels. We tested adaptive control of locomotion to perturbation in cats, and found that this form of motor learning was abolished by application of either an inhibitor of NO synthase or a scavenger of NO to the cerebellar cortical locomotion area. This finding supports the view that NO in the cerebellum plays a key role in motor learning.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The coelacanth, a “living fossil,” lives near the coast of the Comoros archipelago in the Indian Ocean. Living at a depth of about 200 m, the Comoran coelacanth receives only a narrow range of light, at about 480 nm. To detect the entire range of “color” at this depth, the coelacanth appears to use only two closely related paralogous RH1 and RH2 visual pigments with the optimum light sensitivities (λmax) at 478 nm and 485 nm, respectively. The λmax values are shifted about 20 nm toward blue compared with those of the corresponding orthologous pigments. Mutagenesis experiments show that each of these coadapted changes is fully explained by two amino acid replacements.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Examination of the phenotypic effects of specific mutations has been extensively used to identify candidate genes affecting traits of interest. However, such analyses do not reveal anything about the evolutionary forces acting at these loci, or whether standing allelic variation contributes to phenotypic variance in natural populations. The Drosophila gene methuselah (mth) has been proposed as having major effects on organismal stress response and longevity phenotype. Here, we examine patterns of polymorphism and divergence at mth in population level samples of Drosophila melanogaster, D. simulans, and D. yakuba. Mth has experienced an unusually high level of adaptive amino acid divergence concentrated in the intra- and extracellular loop domains of the receptor protein, suggesting the historical action of positive selection on those regions of the molecule that modulate signal transduction. Further analysis of single nucleotide polymorphisms (SNPs) in D. melanogaster provided evidence for contemporary and spatially variable selection at the mth locus. In ten surveyed populations, the most common mth haplotype exhibited a 40% cline in frequency that coincided with population level differences in multiple life-history traits including lifespan. This clinal pattern was not associated with any particular SNP in the coding region, indicating that selection is operating at a closely linked site that may be involved in gene expression. Together, these consistently nonneutral patterns of inter- and intraspecific variation suggest adaptive evolution of a signal transduction pathway that may modulate lifespan in nature.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Transitions between dynamically stable activity patterns imposed on an associative neural network are shown to be induced by self-organized infinitesimal changes in synaptic connection strength and to be a kind of phase transition. A key event for the neural process of information processing in a population coding scheme is transition between the activity patterns encoding usual entities. We propose that the infinitesimal and short-term synaptic changes based on the Hebbian learning rule are the driving force for the transition. The phase transition between the following two dynamical stable states is studied in detail, the state where the firing pattern is changed temporally so as to itinerate among several patterns and the state where the firing pattern is fixed to one of several patterns. The phase transition from the pattern itinerant state to a pattern fixed state may be induced by the Hebbian learning process under a weak input relevant to the fixed pattern. The reverse transition may be induced by the Hebbian unlearning process without input. The former transition is considered as recognition of the input stimulus, while the latter is considered as clearing of the used input data to get ready for new input. To ensure that information processing based on the phase transition can be made by the infinitesimal and short-term synaptic changes, it is absolutely necessary that the network always stays near the critical state corresponding to the phase transition point.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Adaptive reversion of a lac- frameshift mutation in Escherichia coli appears to be due to DNA polymerase errors, implying that DNA is being synthesized although the cells are not dividing. Here we report that the production of adaptive lac+ revertants (i) is much higher when the mutational target is on the F' episome than when it is on the bacterial chromosome; (ii) is enhanced by functions required for conjugation; but (iii) does not require conjugation per se. These results suggest that, in static cells, DNA synthesis is initiated from the conjugal origin of transfer. Mutations may arise as polymerase errors during this synthesis or during synthesis stimulated by recombination among the multiple gene copies.