20 resultados para Acute Kidney Injury

em National Center for Biotechnology Information - NCBI


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nrf2 is a member of the “cap ‘n’ collar” family of transcription factors. These transcription factors bind to the NF-E2 binding sites (GCTGAGTCA) that are essential for the regulation of erythroid-specific genes. Nrf2 is expressed in a wide range of tissues, many of which are sites of expression for phase 2 detoxification genes. Nrf2−/− mice are viable and have a normal phenotype under normal laboratory conditions. The NF-E2 binding site is a subset of the antioxidant response elements that have the sequence GCNNNGTCA. The antioxidant response elements are regulatory sequences found on promoters of several phase 2 detoxification genes that are inducible by xenobiotics and antioxidants. We report here that Nrf2−/− mice are extremely susceptible to the administration of the antioxidant butylated hydroxytoluene. With doses of butylated hydroxytoluene that are tolerated by wild-type mice, the Nrf2−/− mice succumb from acute respiratory distress syndrome. Gene expression studies show that the expression of several detoxification enzymes is altered in the Nrf2−/− mice. The Nrf2−/− mice may prove to be a good in vivo model for toxicological studies. As oxidative damage causes DNA breakage, these mice may also be useful for testing carcinogenic agents.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The goal of this study was to determine whether sphingosine and ceramide, second messengers derived from sphingolipid breakdown, alter kidney proximal tubular cell viability and their adaptive responses to further damage. Adult human kidney proximal tubular (HK-2) cells were cultured for 0-20 hr in the presence or absence of sphingosine, sphingosine metabolites (sphingosine 1-phosphate, dimethylsphingosine), or C2, C8, or C16 ceramide. Acute cell injury was assessed by vital dye exclusion and tetrazolium dye transport. Their subsequent impact on superimposed ATP depletion/Ca2+ ionophore-induced damage was also assessed. Sphingosine (> or = 10 microM), sphingosine 1-phosphate, dimethylsphingosine, and selected ceramides (C2 and C8, but not C16) each induced rapid, dose-dependent cytotoxicity. This occurred in the absence of DNA laddering or morphologic changes of apoptosis, suggesting a necrotic form of cell death. Prolonged exposure (20 hr) to subtoxic sphingosine doses (< or = 7.5 microM) induced substantial cytoresistance to superimposed ATP depletion/Ca2+ ionophore-mediated damage. Conversely, neither short-term sphingosine treatment (< or = 8.5 hr) nor 20-hr exposures to any of the above sphingosine/ceramide derivatives/metabolites or various free fatty acids reproduced this effect. Sphingosine-induced cytoresistance was dissociated from the extent of cytosolic Ca2+ loading (indo-1 fluorescence), indicating a direct increase in cell resistance to attack. We conclude that sphingosine can exert dual effects on proximal renal tubular viability: in high concentrations it induces cell necrosis, whereas in low doses it initiates a cytoresistant state. These results could be reproduced in human foreskin fibroblasts, suggesting broad-based relevance to the area of acute cell injury and repair.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Cellular proliferation and tissue remodeling are central to the regenerative response after a toxic injury to the liver. To explore the role of plasminogen in hepatic tissue remodeling and regeneration, we used carbon tetrachloride to induce an acute liver injury in plasminogen-deficient (Plgo) mice and nontransgenic littermates (Plg+). On day 2 after CCl4, livers of Plg+ and Plgo mice had a similar diseased pale/lacy appearance, followed by restoration of normal appearance in Plg+ livers by day 7. In contrast, Plgo livers remained diseased for as long as 2.5 months, with a diffuse pale/lacy appearance and persistent damage to centrilobular hepatocytes. The persistent centrilobular lesions were not a consequence of impaired proliferative response in Plgo mice. Notably, fibrin deposition was a prominent feature in diseased centrilobular areas in Plgo livers for at least 30 days after injury. Nonetheless, the genetically superimposed loss of the Aα fibrinogen chain (Plgo/Fibo mice) did not correct the abnormal phenotype. These data show that plasminogen deficiency impedes the clearance of necrotic tissue from a diseased hepatic microenvironment and the subsequent reconstitution of normal liver architecture in a fashion that is unrelated to circulating fibrinogen.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Previous studies have shown that proinflammatory cytokines, such as tumor necrosis factor (TNF), are expressed after acute hemodynamic overloading and myocardial ischemia/infarction. To define the role of TNF in the setting of ischemia/infarction, we performed a series of acute coronary artery occlusions in mice lacking one or both TNF receptors. Left ventricular infarct size was assessed at 24 h after acute coronary occlusion by triphenyltetrazolium chloride (TTC) staining in wild-type (both TNF receptors present) and mice lacking either the type 1 (TNFR1), type 2 (TNFR2), or both TNF receptors (TNFR1/TNFR2). Left ventricular infarct size as assessed by TTC staining was significantly greater (P < 0.005) in the TNFR1/TNFR2-deficient mice (77.2% ± 15.3%) when compared with either wild-type mice (46.8% ± 19.4%) or TNFR1-deficient (47.9% ± 10.6%) or TNFR2-deficient (41.6% ± 16.5%) mice. Examination of the extent of necrosis in wild-type and TNFR1/TNFR2-deficient mice by anti-myosin Ab staining demonstrated no significant difference between groups; however, the peak frequency and extent of apoptosis were accelerated in the TNFR1/TNFR2-deficient mice when compared with the wild-type mice. The increase in apoptosis in the TNFR1/TNFR2-deficient mice did not appear to be secondary to a selective up-regulation of the Fas ligand/receptor system in these mice. These data suggest that TNF signaling gives rise to one or more cytoprotective signals that prevent and/or delay the development of cardiac myocyte apoptosis after acute ischemic injury.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Erythropoietin (EPO) promotes neuronal survival after hypoxia and other metabolic insults by largely unknown mechanisms. Apoptosis and necrosis have been proposed as mechanisms of cellular demise, and either could be the target of actions of EPO. This study evaluates whether antiapoptotic mechanisms can account for the neuroprotective actions of EPO. Systemic administration of EPO (5,000 units/kg of body weight, i.p.) after middle-cerebral artery occlusion in rats dramatically reduces the volume of infarction 24 h later, in concert with an almost complete reduction in the number of terminal deoxynucleotidyltransferase-mediated dUTP nick-end labeling of neurons within the ischemic penumbra. In both pure and mixed neuronal cultures, EPO (0.1–10 units/ml) also inhibits apoptosis induced by serum deprivation or kainic acid exposure. Protection requires pretreatment, consistent with the induction of a gene expression program, and is sustained for 3 days without the continued presence of EPO. EPO (0.3 units/ml) also protects hippocampal neurons against hypoxia-induced neuronal death through activation of extracellular signal-regulated kinases and protein kinase Akt-1/protein kinase B. The action of EPO is not limited to directly promoting cell survival, as EPO is trophic but not mitogenic in cultured neuronal cells. These data suggest that inhibition of neuronal apoptosis underlies short latency protective effects of EPO after cerebral ischemia and other brain injuries. The neurotrophic actions suggest there may be longer-latency effects as well. Evaluation of EPO, a compound established as clinically safe, as neuroprotective therapy in acute brain injury is further supported.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The effects of ischemia on the maturation of secretory proteins are not well understood. Among several events that occur during ischemia-reperfusion are a rapid and extensive decrease in ATP levels and an alteration of cellular oxidative state. Since the normal folding and assembly of secretory proteins are mediated by endoplasmic reticulum (ER) molecular chaperones, the function of which depends on ATP and maintenance of an appropriate redox environment, ischemia might be expected to perturb folding of secretory proteins. In this study, whole animal and cultured cell models for the epithelial ischemic state were used to examine this possibility. After acute kidney ischemia, marked increases in the mRNA levels of the ER chaperones glucose-regulated protein (grp)78/immunoglobulin-binding protein (BiP), grp94, and ER protein (ERp)72 were noted. Likewise, when cellular ATP was depleted to less than 10% of control with antimycin A, mRNA levels of BiP, ERp72, and grp94 were increased in kidney and thyroid epithelial cell culture models. Since the signal for the up-regulation of these stress proteins is believed to be the accumulation of misfolded/misassembled secretory proteins in the ER, their induction after ischemia in vivo and antimycin treatment of cultured cells suggests that maturation of secretory proteins in the ER lumen might indeed be perturbed. To analyze the effects of antimycin A on the maturation of secretory proteins, we studied the fate of thyroglobulin (Tg), a large oligomeric secretory glycoprotein, the folding and assembly of which seems to require a variety of ER chaperones. Treatment of cultured thyroid epithelial cells with antimycin A greatly inhibited ( > 90%) the secretion of Tg. Sucrose density gradient analysis revealed that in antimycin A-treated cells Tg associates into large macromolecular complexes which, by immunofluorescence, appeared to localize to the ER. Furthermore, coimmunoprecipitation studies after antimycin A treatment demonstrated that Tg stably associates with BiP, grp94, and ERp72. Together, our results suggest that a key cellular lesion in ischemia is the misfolding of secretory proteins as they transit the ER, and this leads not only to increased expression of ER chaperones but also to their stable association with and the subsequent retention of at least some misfolded secretory proteins.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Substance P, acting via the neurokinin 1 receptor (NK1R), plays an important role in mediating a variety of inflammatory processes. However, its role in acute pancreatitis has not been previously described. We have found that, in normal mice, substance P levels in the pancreas and pancreatic acinar cell expression of NK1R are both increased during secretagogue-induced experimental pancreatitis. To evaluate the role of substance P, pancreatitis was induced in mice that genetically lack NK1R by administration of 12 hourly injections of a supramaximally stimulating dose of the secretagogue caerulein. During pancreatitis, the magnitude of hyperamylasemia, hyperlipasemia, neutrophil sequestration in the pancreas, and pancreatic acinar cell necrosis were significantly reduced in NK1R−/− mice when compared with wild-type NK1R+/+ animals. Similarly, pancreatitis-associated lung injury, as characterized by intrapulmonary sequestration of neutrophils and increased pulmonary microvascular permeability, was reduced in NK1R−/− animals. These effects of NK1R deletion indicate that substance P, acting via NK1R, plays an important proinflammatory role in regulating the severity of acute pancreatitis and pancreatitis-associated lung injury.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The human 15-lipoxygenase (15-LO) gene was transfected into rat kidneys in vivo via intra-renal arterial injection. Three days later, acute (passive) or accelerated forms of antiglomerular basement membrane antibody-mediated glomerulonephritis were induced in transfected and nontransfected or sham-transfected controls. Studies of glomerular functions (filtration and protein excretion) and ex vivo glomerular leukotriene B4 biosynthesis at 3 hr, and up to 4 days, after induction of nephritis revealed preservation or normalization of these parameters in transfected kidneys that expressed human 15-LO mRNA and mature protein, but not in contralateral control kidneys or sham-transfected animals. The results provide in vivo-derived data supporting a direct anti-inflammatory role for 15-LO during immune-mediated tissue injury.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Disruption of guanylyl cyclase-A (GC-A) results in mice displaying an elevated blood pressure, which is not altered by high or low dietary salt. However, atrial natriuretic peptide (ANP), a proposed ligand for GC-A, has been suggested as critical for the maintenance of normal blood pressure during high salt intake. In this report, we show that infusion of ANP results in substantial natriuresis and diuresis in wild-type mice but fails to cause significant changes in sodium excretion or urine output in GC-A-deficient mice. ANP, therefore, appears to signal through GC-A in the kidney. Other natriuretic/diuretic factors could be released from the heart. Therefore, acute volume expansion was used as a means to cause release of granules from the atrium of the heart. That granule release occurred was confirmed by measurements of plasma ANP concentrations, which were markedly elevated in both wild-type and GC-A-null mice. After volume expansion, urine output as well as urinary sodium and cyclic GMP excretion increased rapidly and markedly in wild-type mice, but the rapid increases were abolished in GC-A-deficient animals. These results strongly suggest that natriuretic/diuretic factors released from the heart function exclusively through GC-A.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Double transgenic mice [rat insulin promoter (RIP)-tumor necrosis factor (TNF) and RIP-CD80] whose pancreatic β cells release TNF and bear CD80 all develop an acute early (6 wk) and lethal diabetes mediated by CD8 T cells. The first ultrastructural changes observed in β cells, so far unreported, are focal lesions of endoplasmic reticulum swelling at the points of contact with islet-infiltrating lymphoblasts, followed by cytoplasmic, but not nuclear, apoptosis. Such double transgenic mice were made defective in either the perforin, Fas, or TNF pathways. Remarkably, diabetes was found to be totally independent of perforin and Fas. Mice lacking TNF receptor (TNFR) II had no or late diabetes, but only a minority had severe insulitis. Mice lacking the TNF-lymphotoxin (LTα) locus (whose sole source of TNF are the β cells) all had insulitis comparable to that of nondefective mice, but no diabetes or a retarded and milder form, with lesions suggesting different mechanisms of injury. Because both TNFR II and TNF-LTα mutations have complex effects on the immune system, these data do not formally incriminate membrane TNF as the major T cell mediator of this acute autoimmune diabetes; nevertheless, in the absence of involvement of the perforin or Fas cytotoxic pathways, membrane TNF appears to be the likeliest candidate.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Antagonists of glutamate receptors of the N-methyl-d-aspartate subclass (NMDAR) or inhibitors of nitric oxide synthase (NOS) prevent nervous system plasticity. Inflammatory and neuropathic pain rely on plasticity, presenting a clinical opportunity for the use of NMDAR antagonists and NOS inhibitors in chronic pain. Agmatine (AG), an endogenous neuromodulator present in brain and spinal cord, has both NMDAR antagonist and NOS inhibitor activities. We report here that AG, exogenously administered to rodents, decreased hyperalgesia accompanying inflammation, normalized the mechanical hypersensitivity (allodynia/hyperalgesia) produced by chemical or mechanical nerve injury, and reduced autotomy-like behavior and lesion size after excitotoxic spinal cord injury. AG produced these effects in the absence of antinociceptive effects in acute pain tests. Endogenous AG also was detected in rodent lumbosacral spinal cord in concentrations similar to those previously detected in brain. The evidence suggests a unique antiplasticity and neuroprotective role for AG in processes underlying persistent pain and neuronal injury.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have previously shown that human munc13 (hmunc13) is up-regulated by hyperglycemia under in vitro conditions in human mesangial cell cultures. The purpose of the present study was to determine the cellular function of hmunc13. To do this, we have investigated the subcellular localization of hmunc13 in a transiently transfected renal cell line, opossum kidney cells. We have found that hmunc13 is a cytoplasmic protein and is translocated to the Golgi apparatus after phorbol ester stimulation. In addition, cells transfected with hmunc13 demonstrate apoptosis after treatment with phorbol ester, but cells transfected with an hmunc13 deletion mutant in which the diacylglycerol (C1) binding domain is absent exhibit no change in intracellular distribution and no induction of apoptosis in the presence of phorbol ester stimulation. We conclude that both the diacylglycerol-induced translocation and the apoptosis represent functional activity of hmunc13. We have also demonstrated that munc13-1 and munc13-2 are localized mainly to cortical epithelial cells in rat kidney and both are overexpressed under conditions of hyperglycemia in a streptozotocin-treated diabetic rat model. Taken together, our data suggest that hmunc13 serves as a diacylglycerol-activated, PKC-independent signaling pathway capable of inducing apoptosis and that this pathway may contribute to the renal cell complications of hyperglycemia.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Liver-specific and nonliver-specific methionine adenosyltransferases (MATs) are products of two genes, MAT1A and MAT2A, respectively, that catalyze the formation of S-adenosylmethionine (AdoMet), the principal biological methyl donor. Mature liver expresses MAT1A, whereas MAT2A is expressed in extrahepatic tissues and is induced during liver growth and dedifferentiation. To examine the influence of MAT1A on hepatic growth, we studied the effects of a targeted disruption of the murine MAT1A gene. MAT1A mRNA and protein levels were absent in homozygous knockout mice. At 3 months, plasma methionine level increased 776% in knockouts. Hepatic AdoMet and glutathione levels were reduced by 74 and 40%, respectively, whereas S-adenosylhomocysteine, methylthioadenosine, and global DNA methylation were unchanged. The body weight of 3-month-old knockout mice was unchanged from wild-type littermates, but the liver weight was increased 40%. The Affymetrix genechip system and Northern and Western blot analyses were used to analyze differential expression of genes. The expression of many acute phase-response and inflammatory markers, including orosomucoid, amyloid, metallothionein, Fas antigen, and growth-related genes, including early growth response 1 and proliferating cell nuclear antigen, is increased in the knockout animal. At 3 months, knockout mice are more susceptible to choline-deficient diet-induced fatty liver. At 8 months, knockout mice developed spontaneous macrovesicular steatosis and predominantly periportal mononuclear cell infiltration. Thus, absence of MAT1A resulted in a liver that is more susceptible to injury, expresses markers of an acute phase response, and displays increased proliferation.