2 resultados para Activity programs in education

em National Center for Biotechnology Information - NCBI


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A method is given for determining the time course and spatial extent of consistently and transiently task-related activations from other physiological and artifactual components that contribute to functional MRI (fMRI) recordings. Independent component analysis (ICA) was used to analyze two fMRI data sets from a subject performing 6-min trials composed of alternating 40-sec Stroop color-naming and control task blocks. Each component consisted of a fixed three-dimensional spatial distribution of brain voxel values (a “map”) and an associated time course of activation. For each trial, the algorithm detected, without a priori knowledge of their spatial or temporal structure, one consistently task-related component activated during each Stroop task block, plus several transiently task-related components activated at the onset of one or two of the Stroop task blocks only. Activation patterns occurring during only part of the fMRI trial are not observed with other techniques, because their time courses cannot easily be known in advance. Other ICA components were related to physiological pulsations, head movements, or machine noise. By using higher-order statistics to specify stricter criteria for spatial independence between component maps, ICA produced improved estimates of the temporal and spatial extent of task-related activation in our data compared with principal component analysis (PCA). ICA appears to be a promising tool for exploratory analysis of fMRI data, particularly when the time courses of activation are not known in advance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have screened a collection of transposable-element-induced mutations for those which dominantly modify the extra R7 phenotype of a hypomorphic yan mutation. The members of one of the identified complementation groups correspond to disruptions of the tramtrack (ttk) gene. As heterozygotes, ttk alleles increase the percentage of R7 cells in yan mutant eyes. Just as yan mutations increase ectopic R7 cell formation, homozygous ttk mutant eye clones also contain supernumerary R7 cells. However, in contrast to yan, the formation of these cells in ttk mutant eye tissue is not necessarily dependent on the activity of the sina gene. Furthermore, although yan mutations dominantly interact with mutations in the Ras1, Draf, Dsor1, and rolled (rl) genes to influence R7 cell development, ttk mutations only interact with yan and rl gene mutations to affect this signaling pathway. Our data suggest that yan and ttk both function to repress inappropriate R7 cell development but that their mechanisms of action differ. In particular, TTK activity appears to be autonomously required to regulate a sina-independent mechanism of R7 determination.