28 resultados para Activity concentration correction
em National Center for Biotechnology Information - NCBI
Resumo:
Bloom syndrome (BS) is a rare autosomal recessive disorder characterized by growth deficiency, immunodeficiency, genomic instability, and the early development of cancers of many types. BLM, the protein encoded by BLM, the gene mutated in BS, is localized in nuclear foci and absent from BS cells. BLM encodes a DNA helicase, and proteins from three missense alleles lack displacement activity. BLM transfected into BS cells reduces the frequency of sister chromatid exchanges and restores BLM in the nucleus. Missense alleles fail to reduce the sister chromatid exchanges in transfected BS cells or restore the normal nuclear pattern. BLM complements a phenotype of a Saccharomyces cerevisiae sgs1 top3 strain, and the missense alleles do not. This work demonstrates the importance of the enzymatic activity of BLM for its function and nuclear localization pattern.
Resumo:
Pancreatic beta cells exhibit oscillations in electrical activity, cytoplasmic free Ca2+ concentration ([Ca2+](i)), and insulin release upon glucose stimulation. The mechanism by which these oscillations are generated is not known. Here we demonstrate fluctuations in the activity of the ATP-dependent K+ channels (K(ATP) channels) in single beta cells subject to glucose stimulation or to stimulation with low concentrations of tolbutamide. During stimulation with glucose or low concentrations of tolbutamide, K(ATP) channel activity decreased and action potentials ensued. After 2-3 min, despite continuous stimulation, action potentials subsided and openings of K(ATP) channels could again be observed. Transient suppression of metabolism by azide in glucose-stimulated beta cells caused reversible termination of electrical activity, mimicking the spontaneous changes observed with continuous glucose stimulation. Thus, oscillations in K(ATP) channel activity during continuous glucose stimulation result in oscillations in electrical activity and [Ca2+](i).
Resumo:
The Saccharomyces cerevisiae Sec7 protein (ySec7p), which is an important component of the yeast secretory pathway, contains a sequence of ≈200 amino acids referred to as a Sec7 domain. Similar Sec7 domain sequences have been recognized in several guanine nucleotide-exchange proteins (GEPs) for ADP ribosylation factors (ARFs). ARFs are ≈20-kDa GTPases that regulate intracellular vesicular membrane trafficking and activate phospholipase D. GEPs activate ARFs by catalyzing the replacement of bound GDP with GTP. We, therefore, undertook to determine whether a Sec7 domain itself could catalyze nucleotide exchange on ARF and found that it exhibited brefeldin A (BFA)-inhibitable ARF GEP activity. BFA is known to inhibit ARF GEP activity in Golgi membranes, thereby causing reversible apparent dissolution of the Golgi complex in many cells. The His6-tagged Sec7 domain from ySec7p (rySec7d) synthesized in Escherichia coli enhanced binding of guanosine 5′-[γ-[35S]thio]triphosphate by recombinant yeast ARF1 (ryARF1) and ryARF2 but not by ryARF3. The effects of rySec7d on ryARF2 were inhibited by BFA in a concentration-dependent manner but not by inactive analogues of BFA (B-17, B-27, and B-36). rySec7d also promoted BFA-sensitive guanosine 5′-[γ-thio]triphosphate binding by nonmyristoylated recombinant human ARF1 (rhARF1), rhARF5, and rhARF6, although the effect on rhARF6 was very small. These results are consistent with the conclusion that the yeast Sec7 domain itself contains the elements necessary for ARF GEP activity and its inhibition by BFA.
Resumo:
Elevated levels of the p21WAF1 (p21) cyclin-dependent kinase inhibitor induce growth arrest. We have characterized a panel of monoclonal antibodies against human p21 in an effort to understand the dynamic regulatory interactions between this and other cellular proteins during the cell cycle. The use of these reagents has allowed us to address several important, yet unresolved, issues concerning the biological activity of p21, including the potential kinase activity of complexes that associate with this cyclin-dependent kinase inhibitor. We have found that the kinase activity of cyclin A/Cdk2 associated with p21 is significantly lower than that of cyclin A/Cdk2 free of p21, suggesting that p21 abolishes its activity in vivo, and the use of multiple antibodies has enabled us to begin the study of the molecular architecture of p21 complexes in vivo. In addition, we found that human fibroblasts released from a quiescent state display abundant amounts of p21 devoid of associated proteins (“free” p21), the levels of which decrease as cells approach S phase. Cyclin A levels increase as the amount of monomeric p21 decreases, resulting in an excess of cyclin A/Cdk2 complexes that are not bound to, or inactivated by, p21. Our data strengthen the notion that the G1-to-S phase transition in human fibroblasts occurs when the concentration of cyclin A/Cdk2 surpasses that of p21.
Resumo:
When a hair cell is stimulated by positive deflection of its hair bundle, increased tension in gating springs opens transduction channels, permitting cations to enter stereocilia and depolarize the cell. Ca2+ is thought to be required in mechanoelectrical transduction, for exposure of hair bundles to Ca2+ chelators eliminates responsiveness by disrupting tip links, filamentous interstereociliary connections that probably are the gating springs. Ca2+ also participates in adaptation to stimuli by controlling the activity of a molecular motor that sets gating-spring tension. Using a flexible glass fiber to measure hair-bundle stiffness, we investigated the effect of Ca2+ concentration on stiffness before and after the disruption of gating springs. The stiffness of intact hair bundles depended nonmonotonically on the extracellular Ca2+ concentration; the maximal stiffness of ≈1200 μN⋅m−1 occurred when bundles were bathed in solutions containing 250 μM Ca2+, approximately the concentration found in frog endolymph. For cells exposed to solutions with sufficient chelator capacity to reduce the Ca2+ concentration below ≈100 nM, hair-bundle stiffness fell to ≈200 μN⋅m−1 and no longer exhibited Ca2+-dependent changes. Because cells so treated lost mechanoelectrical transduction, we attribute the reduction in bundle stiffness to tip-link disruption. The results indicate that gating springs are not linearly elastic; instead, they stiffen with increased strain, which rises with adaptation-motor activity at the physiological extracellular Ca2+ concentration.
Resumo:
We have studied the effect of the cholinergic agonist carbachol on the spontaneous release of glutamate in cultured rat hippocampal cells. Spontaneous excitatory postsynaptic currents (sEPSCs) through glutamatergic α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-type channels were recorded by means of the patch-clamp technique. Carbachol increased the frequency of sEPSCs in a concentration-dependent manner. The kinetic properties of the sEPSCs and the amplitude distribution histograms were not affected by carbachol, arguing for a presynaptic site of action. This was confirmed by measuring the turnover of the synaptic vesicular pool by means of the fluorescent dye FM 1–43. The carbachol-induced increase in sEPSC frequency was not mimicked by nicotine, but could be blocked by atropine or by pirenzepine, a muscarinic cholinergic receptor subtype M1 antagonist. Intracellular Ca2+ signals recorded with the fluorescent probe Fluo-3 indicated that carbachol transiently increased intracellular Ca2+ concentration. Since, however, carbachol still enhanced the sEPSC frequency in bis(2-aminophenoxy)ethane-N,N,N′,N′-tetra-acetate-loaded cells, this effect could not be attributed to the rise in intracellular Ca2+ concentration. On the other hand, the protein kinase inhibitor staurosporine as well as a down-regulation of protein kinase C by prolonged treatment of the cells with 4β-phorbol 12-myristate 13-acetate inhibited the carbachol effect. This argues for an involvement of protein kinase C in presynaptic regulation of spontaneous glutamate release. Adenosine, which inhibits synaptic transmission, suppressed the carbachol-induced stimulation of sEPSCs by a G protein-dependent mechanism activated by presynaptic A1-receptors.
Resumo:
Development of in utero gene transfer approaches may provide therapies for genetic disorders with perinatal morbidity. In hemophilia A, prenatal and postnatal bleeding may be catastrophic, and modest increments in factor VIII (FVIII) activity are therapeutic. We performed transuterine i.p. gene transfer at day 15 of gestation in a murine model of hemophilia A. Normal, carrier (XHX), and FVIII-deficient (XHY and XHXH) fetuses injected with adenoviral vectors carrying luciferase or β-galactosidase reporter genes showed high-level gene expression with 91% fetal survival. The live-born rates of normal and FVIII-deficient animals injected in utero with adenovirus murine FVIII (3.3 × 105 plaque-forming units) was 87%. FVIII activity in plasma was 50.7 ± 10.5% of normal levels at day 2 of life, 7.2 ± 2.2% by day 15 of life, and no longer detectable at day 21 of life in hemophilic animals. Injection of higher doses of murine FVIII adenovirus at embryonic day 15 produced supranormal levels of FVIII activity in the neonatal period. PCR analysis identified viral genomes primarily in the liver, intestine, and spleen, although adenoviral DNA was detected in distal tissues when higher doses of adenovirus were administered. These studies show that transuterine i.p. injection of adenoviral vectors produces therapeutic levels of circulating FVIII throughout the neonatal period. The future development of efficient and persisting vectors that produce long-term gene expression may allow for in utero correction of genetic diseases originating in the fetal liver, hematopoietic stem cells, as well as other tissues.
Resumo:
Overexpression of the RIα subunit of cAMP-dependent protein kinase (PKA) has been demonstrated in various human cancers. PKA has been suggested as a potential target for cancer therapy. The goal of the present study was to evaluate an anti-PKA antisense oligonucleotide (mixed-backbone oligonucleotide) as a therapeutic approach to human cancer treatment. The identified oligonucleotide inhibited the growth of cell lines of human colon cancer (LS174T, DLD-1), leukemia (HL-60), breast cancer (MCF-7, MDA-MB-468), and lung cancer (A549) in a time-, concentration-, and sequence-dependent manner. In a dose-dependent manner, the oligonucleotide displayed in vivo antitumor activity in severe combined immunodeficient and nude mice bearing xenografts of human cancers of the colon (LS174T), breast (MDA-MB-468), and lung (A549). The routes of drug administration were intraperitoneal and oral. Synergistic effects were found when the antisense oligonucleotide was used in combination with the cancer chemotherapeutic agent cisplatin. The pharmacokinetics of the oligonucleotide after oral administration of 35S-labeled oligonucleotide into tumor-bearing mice indicated an accumulation and retention of the oligonucleotide in tumor tissue. This study further provides a basis for clinical studies of the antisense oligonucleotide targeted to the RIα subunit of PKA (GEM 231) as a cancer therapeutic agent used alone or in combination with conventional chemotherapy.
Resumo:
Modern functional neuroimaging methods, such as positron-emission tomography (PET), optical imaging of intrinsic signals, and functional MRI (fMRI) utilize activity-dependent hemodynamic changes to obtain indirect maps of the evoked electrical activity in the brain. Whereas PET and flow-sensitive MRI map cerebral blood flow (CBF) changes, optical imaging and blood oxygenation level-dependent MRI map areas with changes in the concentration of deoxygenated hemoglobin (HbR). However, the relationship between CBF and HbR during functional activation has never been tested experimentally. Therefore, we investigated this relationship by using imaging spectroscopy and laser-Doppler flowmetry techniques, simultaneously, in the visual cortex of anesthetized cats during sensory stimulation. We found that the earliest microcirculatory change was indeed an increase in HbR, whereas the CBF increase lagged by more than a second after the increase in HbR. The increased HbR was accompanied by a simultaneous increase in total hemoglobin concentration (Hbt), presumably reflecting an early blood volume increase. We found that the CBF changes lagged after Hbt changes by 1 to 2 sec throughout the response. These results support the notion of active neurovascular regulation of blood volume in the capillary bed and the existence of a delayed, passive process of capillary filling.
Resumo:
The increasing resistance of the malaria parasite Plasmodium falciparum to currently available drugs demands a continuous effort to develop new antimalarial agents. In this quest, the identification of antimalarial effects of drugs already in use for other therapies represents an attractive approach with potentially rapid clinical application. We have found that the extensively used antimycotic drug clotrimazole (CLT) effectively and rapidly inhibited parasite growth in five different strains of P. falciparum, in vitro, irrespective of their chloroquine sensitivity. The concentrations for 50% inhibition (IC50), assessed by parasite incorporation of [3H]hypoxanthine, were between 0.2 and 1.1 μM. CLT concentrations of 2 μM and above caused a sharp decline in parasitemia, complete inhibition of parasite replication, and destruction of parasites and host cells within a single intraerythrocytic asexual cycle (≈48 hr). These concentrations are within the plasma levels known to be attained in humans after oral administration of the drug. The effects were associated with distinct morphological changes. Transient exposure of ring-stage parasites to 2.5 μM CLT for a period of 12 hr caused a delay in development in a fraction of parasites that reverted to normal after drug removal; 24-hr exposure to the same concentration caused total destruction of parasites and parasitized cells. Chloroquine antagonized the effects of CLT whereas mefloquine was synergistic. The present study suggests that CLT holds much promise as an antimalarial agent and that it is suitable for a clinical study in P. falciparum malaria.
Resumo:
Fabry disease is a lysosomal storage disorder caused by a deficiency of the lysosomal enzyme α-galactosidase A (α-gal A). This enzyme deficiency leads to impaired catabolism of α-galactosyl-terminal lipids such as globotriaosylceramide (Gb3). Patients develop painful neuropathy and vascular occlusions that progressively lead to cardiovascular, cerebrovascular, and renal dysfunction and early death. Although enzyme replacement therapy and bone marrow transplantation have shown promise in the murine analog of Fabry disease, gene therapy holds a strong potential for treating this disease in humans. Delivery of the normal α-gal A gene (cDNA) into a depot organ such as liver may be sufficient to elicit corrective circulating levels of the deficient enzyme. To investigate this possibility, a recombinant adeno-associated viral vector encoding human α-gal A (rAAV-AGA) was constructed and injected into the hepatic portal vein of Fabry mice. Two weeks postinjection, α-gal A activity in the livers of rAAV-AGA-injected Fabry mice was 20–35% of that of the normal mice. The transduced animals continued to show higher α-gal A levels in liver and other tissues compared with the untouched Fabry controls as long as 6 months after treatment. In parallel to the elevated enzyme levels, we see significant reductions in Gb3 levels to near normal at 2 and 5 weeks posttreatment. The lower Gb3 levels continued in liver, spleen, and heart, up to 25 weeks with no significant immune response to the virus or α-gal A. Also, no signs of liver toxicity occurred after the rAAV-AGA administration. These findings suggest that an AAV-mediated gene transfer may be useful for the treatment of Fabry disease and possibly other metabolic disorders.
Resumo:
Using a group of structurally related cytofectins, the effects of different vehicle constituents and mixing techniques on the physical properties and biological activity of lipoplexes were systematically examined. Physical properties were examined using a combination of dye accessibility assays, centrifugation, gel electrophoresis and dynamic light scattering. Biological activity was examined using in vitro transfection. Lipoplexes were formulated using two injection vehicles commonly used for in vivo delivery (PBS pH 7.2 and 0.9% saline), and a sodium phosphate vehicle previously shown to enhance the biological activity of naked pDNA and lipoplex formulations. Phosphate was found to be unique in its effect on lipoplexes. Specifically, the accessible pDNA in lipoplexes formulated with cytofectins containing a γ-amine substitution in the headgroup was dependent on alkyl side chain length and sodium phosphate concentration, but the same effects were not observed when using cytofectins containing a β-OH headgroup substitution. The physicochemical features of the phosphate anion, which give rise to this effect in γ-amine cytofectins, were deduced using a series of phosphate analogs. The effects of the formulation vehicle on transfection were found to be cell type-dependent; however, of the formulation variables examined, the liposome/pDNA mixing method had the greatest effect on transgene expression in vitro. Thus, though predictive physical structure relationships involving the vehicle and cytofectin components of the lipoplex were uncovered, they did not extrapolate to trends in biological activity.
Resumo:
A cDNA encoding annexin was isolated from a cotton (Gossypium hirsutum) fiber cDNA library. The cDNA was expressed in Escherichia coli, and the resultant recombinant protein was purified. We then investigated some biochemical properties of the recombinant annexin based on the current understanding of plant annexins. An “add-back experiment” was performed to study the effect of the recombinant annexin on β-glucan synthase activity, but no effect was found. However, it was found that the recombinant annexin could display ATPase/GTPase activities. The recombinant annexin showed much higher GTPase than ATPase activity. Mg2+ was essential for these activities, whereas a high concentration of Ca2+ was inhibitory. A photolabeling assay showed that this annexin could bind GTP more specifically than ATP. The GTP-binding site on the annexin was mapped into the carboxyl-terminal fourth repeat of annexin from the photolabeling experiment using domain-deletion mutants of this annexin. Northern-blot analysis showed that the annexin gene was highly expressed in the elongation stages of cotton fiber differentiation, suggesting a role of this annexin in cell elongation.
Resumo:
It has been reported that carbonic anhydrase (CA) activity in plant leaves is decreased by Zn deficiency. We examined the effects of Zn deficiency on the activity of CA and on photosynthesis by leaves in rice plants (Oryza sativa L.). Zn deficiency increased the transfer resistance from the stomatal cavity to the site of CO2 fixation 2.3-fold and, consequently, the value of the transfer resistance relative to the total resistance in the CO2-assimilation process increased from 10% to 21%. This change led to a reduced CO2 concentration at the site of CO2 fixation, resulting in an increased gradient of CO2 between the stomatal cavity and this site. The present findings support the hypothesis that CA functions to facilitate the supply of CO2 from the stomatal cavity to the site of CO2 fixation. We also showed that the level of mRNA for CA decreased to 13% of the control level during Zn deficiency. This decrease resembled the decrease in CA activity, suggesting the possible involvement of the CA mRNA level in the regulation of CA activity.
Resumo:
Al toxicity is a major problem that limits crop productivity on acid soils. It has been suggested that Al toxicity is linked to changes in cellular Ca homeostasis and the blockage of plasma membrane Ca2+-permeable channels. BY-2 suspension-cultured cells of tobacco (Nicotiana tabacum L.) exhibit rapid cell expansion that is sensitive to Al. Therefore, the effect of Al on changes in cytoplasmic free Ca concentration ([Ca2+]cyt) was followed in BY-2 cells to assess whether Al perturbed cellular Ca homeostasis. Al exposure resulted in a prolonged reduction in [Ca2+]cyt and inhibition of growth that was similar to the effect of the Ca2+ channel blocker La3+ and the Ca2+ chelator ethyleneglycol-bis(β-aminoethyl ether)-N,N′-tetraacetic acid. The Ca2+ channel blockers verapamil and nifedipine did not induce a decrease in [Ca2+]cyt in these cells and also failed to inhibit growth. Al and La3+, but not verapamil or nifedipine, reduced the rate of Mn2+ quenching of Indo-1 fluorescence, which is consistent with the blockage of Ca2+- and Mn2+-permeable channels. These results suggest that Al may act to block Ca2+ channels at the plasma membrane of plant cells and this action may play a crucial role in the phytotoxic activity of the Al ion.