2 resultados para Active Pixel Sensor

em National Center for Biotechnology Information - NCBI


Relevância:

30.00% 30.00%

Publicador:

Resumo:

SoxR protein is known to function both as a sensor and as a transcriptional activator for a superoxide response regulon in Escherichia coli. The activity of SoxR was tested by its ability to enable the transcription of its target gene, soxS, in vitro. The activity of the oxidized form was lost when its [2Fe-2S] clusters were reduced by dithionite under anaerobic conditions, and it was rapidly restored by autooxidation. This result is consistent with the hypothesis that induction of the regulon is effected by the univalent oxidation of the Fe-S centers of SoxR. In vivo, this oxidation may be caused by an alteration of the redox balance of electron chain intermediates that normally maintains soxR in an inactive, reduced state. Oxidized SoxR was about twice as effective as reduced SoxR in protecting the soxS operator from endonucleolytic cleavage. However, this difference could not account for a greater than 50-fold difference in their activities and therefore could not support a model in which oxidation activates SoxR by enabling it to bind to DNA. NADPH, ferredoxin, flavodoxin, or ferredoxin (flavodoxin):NADP+ reductase could not reduce SoxR directly in vitro at a measurable rate. The midpoint potential for SoxR was measured at -283 mV.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Binding and signaling proteins based on Escherichia coli alkaline phosphatase (AP; EC 3.1.3.1) were designed for the detection of antibodies. Hybrid proteins were constructed by using wild-type AP and point mutants of AP [Asp-101 --> Ser (D101S) and Asp-153 --> Gly (D153G)]. The binding function of the hybrid proteins is provided by a peptide epitope inserted between amino acids 407 and 408 in AP. Binding of anti-epitope antibodies to the hybrid proteins modulates the enzyme activity of the hybrids; upon antibody binding, enzyme activity can increase to as much as 300% of the level of activity in the absence of antibody or can decrease as much as 40%, depending on the presence or absence of the point mutations in AP. The fact that modulation is altered from inhibition to activation by single amino acid changes in the active site of AP suggests that the mechanism for modulation is due to structural alterations upon antibody binding. Modulation is a general phenomenon. The properties of the system are demonstrated by using two epitopes, one from the V3 loop of human immunodeficiency virus type 1 gp120 protein and one from hepatitis C virus core protein, and corresponding monoclonal antibodies. The trend of modulation is consistent for all hybrids; those in wild-type AP are inhibited by antibody, while those in the AP mutants are activated by antibody. This demonstrates that modulation of enzyme activity of the AP-epitope hybrid proteins is not specific to either a particular epitope sequence or a particular antibody-epitope combination.