21 resultados para Acquired-resistance

em National Center for Biotechnology Information - NCBI


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The recently cloned NPR1 gene of Arabidopsis thaliana is a key regulator of acquired resistance responses. Upon induction, NPR1 expression is elevated and the NPR1 protein is activated, in turn inducing expression of a battery of downstream pathogenesis-related genes. In this study, we found that NPR1 confers resistance to the pathogens Pseudomonas syringae and Peronospora parasitica in a dosage-dependent fashion. Overexpression of NPR1 leads to enhanced resistance with no obvious detrimental effect on the plants. Thus, for the first time, a single gene is shown to be a workable target for genetic engineering of nonspecific resistance in plants.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cucumber (Cucumis sativa) leaves infiltrated with Pseudomonas syringae pv. syringae cells produced a mobile signal for systemic acquired resistance between 3 and 6 h after inoculation. The production of a mobile signal by inoculated leaves was followed by a transient increase in phenylalanine ammonia-lyase (PAL) activity in the petioles of inoculated leaves and in stems above inoculated leaves; with peaks in activity at 9 and 12 h, respectively, after inoculation. In contrast, PAL activity in inoculated leaves continued to rise slowly for at least 18 h. No increases in PAL activity were detected in healthy leaves of inoculated plants. Two benzoic acid derivatives, salicylic acid (SA) and 4-hydroxybenzoic acid (4HBA), began to accumulate in phloem fluids at about the time PAL activity began to increase, reaching maximum concentrations 15 h after inoculation. The accumulation of SA and 4HBA in phloem fluids was unaffected by the removal of all leaves 6 h after inoculation, and seedlings excised from roots prior to inoculation still accumulated high levels of SA and 4HBA. These results suggest that SA and 4HBA are synthesized de novo in stems and petioles in response to a mobile signal from the inoculated leaf.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Systemic acquired resistance (SAR) is an important component of plant defense against pathogen infection. Accumulation of salicylic acid (SA) is required for the induction of SAR. However, SA is apparently not the translocated signal but is involved in transducing the signal in target tissues. Interestingly, SA accumulation is not required for production and release of the systemic signal. In addition to playing a pivotal role in SAR signal transduction, SA is important in modulating plant susceptibility to pathogen infection and genetic resistance to disease. It has been proposed that SA inhibition of catalase results in H2O2 accumulation and that therefore H2O2 serves as a second messenger in SAR signaling. We find no accumulation of H2O2 in tissues expressing SAR; thus the role of H2O2 in SAR signaling is questionable.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The cell death response known as the hypersensitive response (HR) is a central feature of gene-for-gene plant disease resistance. A mutant line of Arabidopsis thaliana was identified in which effective gene-for-gene resistance occurs despite the virtual absence of HR cell death. Plants mutated at the DND1 locus are defective in HR cell death but retain characteristic responses to avirulent Pseudomonas syringae such as induction of pathogenesis-related gene expression and strong restriction of pathogen growth. Mutant dnd1 plants also exhibit enhanced resistance against a broad spectrum of virulent fungal, bacterial, and viral pathogens. The resistance against virulent pathogens in dnd1 plants is quantitatively less strong and is differentiable from the gene-for-gene resistance mediated by resistance genes RPS2 and RPM1. Levels of salicylic acid compounds and mRNAs for pathogenesis-related genes are elevated constitutively in dnd1 plants. This constitutive induction of systemic acquired resistance may substitute for HR cell death in potentiating the stronger gene-for-gene defense response. Although cell death may contribute to defense signal transduction in wild-type plants, the dnd1 mutant demonstrates that strong restriction of pathogen growth can occur in the absence of extensive HR cell death in the gene-for-gene resistance response of Arabidopsis against P. syringae.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Continual exposure of malarial parasite populations to different drugs may have selected not only for resistance to individual drugs but also for genetic traits that favor initiation of resistance to novel unrelated antimalarials. To test this hypothesis, different Plasmodium falciparum clones having varying numbers of preexisting resistance mechanisms were treated with two new antimalarial agents: 5-fluoroorotate and atovaquone. All parasite populations were equally susceptible in small numbers. However, when large populations of these clones were challenged with either of the two compounds, significant variations in frequencies of resistance became apparent. On one extreme, clone D6 from West Africa, which was sensitive to all traditional antimalarial agents, failed to develop resistance under simple nonmutagenic conditions in vitro. In sharp contrast, the Indochina clone W2, which was known to be resistant to all traditional antimalarial drugs, independently acquired resistance to both new compounds as much as a 1,000 times more frequently than D6. Additional clones that were resistant to some (but not all) traditional antimalarial agents acquired resistance to atovaquone at high frequency, but not to 5-fluoroorotate. These findings were unexpected and surprising based on current views of the evolution of drug resistance in P. falciparum populations. Such new phenotypes, named accelerated resistance to multiple drugs (ARMD), raise important questions about the genetic and biochemical mechanisms related to the initiation of drug resistance in malarial parasites. Some potential mechanisms underlying ARMD phenotypes have public health implications that are ominous.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The plant-signaling molecules salicylic acid (SA) and jasmonic acid (JA) play an important role in induced disease resistance pathways. Cross-talk between SA- and JA-dependent pathways can result in inhibition of JA-mediated defense responses. We investigated possible antagonistic interactions between the SA-dependent systemic acquired resistance (SAR) pathway, which is induced upon pathogen infection, and the JA-dependent induced systemic resistance (ISR) pathway, which is triggered by nonpathogenic Pseudomonas rhizobacteria. In Arabidopsis thaliana, SAR and ISR are effective against a broad spectrum of pathogens, including the foliar pathogen Pseudomonas syringae pv. tomato (Pst). Simultaneous activation of SAR and ISR resulted in an additive effect on the level of induced protection against Pst. In Arabidopsis genotypes that are blocked in either SAR or ISR, this additive effect was not evident. Moreover, induction of ISR did not affect the expression of the SAR marker gene PR-1 in plants expressing SAR. Together, these observations demonstrate that the SAR and the ISR pathway are compatible and that there is no significant cross-talk between these pathways. SAR and ISR both require the key regulatory protein NPR1. Plants expressing both types of induced resistance did not show elevated Npr1 transcript levels, indicating that the constitutive level of NPR1 is sufficient to facilitate simultaneous expression of SAR and ISR. These results suggest that the enhanced level of protection is established through parallel activation of complementary, NPR1-dependent defense responses that are both active against Pst. Therefore, combining SAR and ISR provides an attractive tool for the improvement of disease control.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Exposure of Arabidopsis thaliana to ozone results in the expression of a number of defense-related genes that are also induced during a hypersensitive response. A potential common link between the activation of defense gene expression during a hypersensitive response and by ozone treatment is the production of active oxygen species and the accumulation of hydrogen peroxide. Here we report that salicylic acid accumulation, which can be induced by hydrogen peroxide and is required for the expression of both a hypersensitive response and systemic acquired resistance, is also required for the induction of some, but not all, ozone-induced mRNAs examined. In addition, we show that ozone exposure triggers induced resistance of A. thaliana to infection with virulent phytopathogenic Pseudomonas syringae strains. Infection of transgenic plants expressing salicylate hydroxylase, which prevents the accumulation of salicylic acid, or npr1 mutant plants, which are defective in the expression of systemic acquired resistance at a step downstream of salicylic acid, demonstrated that the signaling pathway activated during ozone-induced resistance overlaps with the systemic acquired resistance activation pathway and is salicylic acid dependent. Interestingly, plants expressing salicylate hydroxylase exhibited increased sensitivity to ozone exposure. These results demonstrate that ozone activates at least two distinct signaling pathways, including a salicylic acid dependent pathway previously shown to be associated with the activation of pathogen defense reactions, and that this latter pathway also induces a protective response to ozone.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Plants possess multiple resistance mechanisms that guard against pathogen attack. Among these are inducible systems such as systemic acquired resistance (SAR). SAR is activated by pathogen exposure and leads to an increase in salicylic acid (SA), high-level expression of SAR-related genes, and resistance to a spectrum of pathogens. To identify components of the signal transduction pathways regulating SAR, a mutant screen was developed that uses 2,6-dichloroisonicotinic acid as an activator of SAR gene expression and pathogen resistance, followed by assays for resistance to the fungal pathogen Peronospora parasitica. Mutants from this screen were subsequently examined to assess their defense responses. We describe here a recessive mutation that causes a phenotype of insensitivity to chemical and biological inducers of SAR genes and resistance. These data indicate the existence of a common signaling pathway that couples these diverse stimuli to induction of SAR genes and resistance. Because of its non-inducible immunity phenotype, we call this mutant nim1. Although nim1 plants fail to respond to SA, they retain the ability to accumulate wild-type levels of SA, a probable endogenous signal for SAR. Further, the ability of nim1 plants to support growth of normally incompatible races of a fungal pathogen indicates a role for this pathway in expression of genetically determined resistance, consistent with earlier findings for transgenic plants engineered to break down SA. These results suggest that the wild-type NIM1 gene product functions in a pathway regulating acquired resistance, at a position downstream of SA accumulation and upstream of SAR gene induction and expression of resistance.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

S-Adenosylhomocysteine hydrolase (SAHH) is a key enzyme in transmethylation reactions that use S-adenosylmethionine as the methyl donor. Because of the importance of SAHH in a number of S-adenosylmethionine-dependent transmethylation reactions, particularly the 5' capping of mRNA during viral replication, SAHH has been considered as a target of potential antiviral agents against animal viruses. To test the possibility of engineering a broad type of resistance to plant viruses, we expressed the antisense RNA for tobacco SAHH in transgenic tobacco plants. As expected, transgenic plants constitutively expressing an anti-sense SAHH gene showed resistance to infection by various plant viruses. Among those plants, about half exhibited some level of morphological change (typically stunting). Analysis of the physiological change in those plants showed that they contained excess levels of cytokinin. Because cytokinin has been found to induce acquired resistance, there is also a strong possibility that the observed resistance was induced by cytokinin.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Salicylic acid (SA) plays an important role in signaling the activation of plant defense responses against pathogen attack including induction of pathogenesis-related (PR) proteins. To gain further insight into the SA-mediated signal transduction pathway, we have isolated and characterized a tobacco mosaic virus (TMV)-inducible myb oncogene homolog (myb1) from tobacco. The myb1 gene was induced upon TMV infection during both the hypersensitive response and development of systemic acquired resistance in the resistant tobacco cultivar following the rise of endogenous SA, but was not activated in the susceptible cultivar that fails to accumulate SA. The myb1 gene was also induced by incompatible bacterial pathogen Pseudomonas syringae pv. syringae during the hypersensitive response. Exogenous SA treatment rapidly (within 15 min) activated the expression of myb1 in both resistant and susceptible tobacco cultivars with the subsequent induction of PR genes occurring several hours later. Biologically active analogs of SA and 2,6-dichloroisonicotinic acid (a synthetic functional analog of SA), which induce PR genes and enhanced resistance, also activated the myb1 gene. In contrast, biologically inactive analogs were poor inducers of myb1 gene expression. Furthermore, the recombinant Myb1 protein was shown to specifically bind to a Myb-binding consensus sequence found in the promoter of the PR-1a gene. Taken together, these results suggest that the tobacco myb1 gene encodes a signaling component downstream of SA that may participate in transcriptional activation of PR genes and plant disease resistance.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The locus RTM1 is necessary for restriction of long-distance movement of tobacco etch virus in Arabidopsis thaliana without causing a hypersensitive response or inducing systemic acquired resistance. The RTM1 gene was isolated by map-based cloning. The deduced gene product is similar to the α-chain of the Artocarpus integrifolia lectin, jacalin, and to several proteins that contain multiple repeats of a jacalin-like sequence. These proteins comprise a family with members containing modular organizations of one or more jacalin repeat units and are implicated in defense against viruses, fungi, and insects.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Arabidopsis thaliana NPR1 has been shown to be a key regulator of gene expression during the onset of a plant disease-resistance response known as systemic acquired resistance. The npr1 mutant plants fail to respond to systemic acquired resistance-inducing signals such as salicylic acid (SA), or express SA-induced pathogenesis-related (PR) genes. Using NPR1 as bait in a yeast two-hybrid screen, we identified a subclass of transcription factors in the basic leucine zipper protein family (AHBP-1b and TGA6) and showed that they interact specifically in yeast and in vitro with NPR1. Point mutations that abolish the NPR1 function in A. thaliana also impair the interactions between NPR1 and the transcription factors in the yeast two-hybrid assay. Furthermore, a gel mobility shift assay showed that the purified transcription factor protein, AHBP-1b, binds specifically to an SA-responsive promoter element of the A. thaliana PR-1 gene. These data suggest that NPR1 may regulate PR-1 gene expression by interacting with a subclass of basic leucine zipper protein transcription factors.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Salicylic acid (SA) is an important component of systemic-acquired resistance in plants. It is synthesized from benzoic acid (BA) as part of the phenylpropanoid pathway. Benzaldehyde (BD), a potential intermediate of this pathway, was found in healthy and tobacco mosaic virus (TMV)-inoculated tobacco (Nicotiana tabacum L. cv Xanthi-nc) leaf tissue at 100 ng/g fresh weight concentrations as measured by gas chromatography-mass spectrometry. BD was also emitted as a volatile organic compound from tobacco tissues. Application of gaseous BD to plants enclosed in jars caused a 13-fold increase in SA concentration, induced the accumulation of the pathogenesis-related transcript PR-1, and increased the resistance of tobacco to TMV inoculation. [13C6]BD and [2H5]benzyl alcohol were converted to BA and SA. Labeling experiments using [13C1]Phe in temperature-shifted plants inoculated with the TMV showed high enrichment of cinnamic acids (72%), BA (34%), and SA (55%). The endogenous BD, however, contained nondetectable enrichment, suggesting that BD was not the intermediate between cinnamic acid and BA. These results show that BD and benzyl alcohol promote SA accumulation and expression of defense responses in tobacco, and provide insight into the early steps of SA biosynthesis.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Systemic acquired resistance is an important component of the disease-resistance arsenal of plants, and is associated with an enhanced potency for activating local defense responses upon pathogen attack. Here we demonstrate that pretreatment with benzothiadiazole (BTH), a synthetic activator of acquired resistance in plants, augmented the sensitivity for low-dose elicitation of coumarin phytoalexin secretion by cultured parsley (Petroselinum crispum L.) cells. Enhanced coumarin secretion was associated with potentiated activation of genes encoding Phe ammonia-lyase (PAL). The augmentation of PAL gene induction was proportional to the length of pretreatment with BTH, indicating time-dependent priming of the cells. In contrast to the PAL genes, those for anionic peroxidase were directly induced by BTH in the absence of elicitor, thus confirming a dual role for BTH in the activation of plant defenses. Strikingly, the ability of various chemicals to enhance plant disease resistance correlated with their capability to potentiate parsley PAL gene elicitation, emphasizing an important role for defense response potentiation in acquired plant disease resistance.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Secretion of anionic endo- and xenobiotics is essential for the survival of animal and plant cells; however, the underlying molecular mechanisms remain uncertain. To better understand one such model system--i.e., secretion of bile acids by the liver--we utilized a strategy analogous to that employed to identify the multidrug resistance (mdr) genes. We synthesized the methyl ester of glycocholic acid (GCE), which readily enters cells, where it is hydrolyzed to yield glycocholic acid, a naturally occurring bile acid. The rat hepatoma-derived HTC cell line gradually acquired resistance to GCE concentrations 20-fold higher than those which inhibited growth of naive cells, yet intracellular accumulation of radiolabel in resistant cells exposed to [14C]GCE averaged approximately 25% of that in nonresistant cells. As compared with nonresistant cells, resistant cells also exhibited (i) cross-resistance to colchicine, a known mdr substrate, but not to other noxious substances transported by hepatocytes; (ii) increased abundance on Northern blot of mRNA species up to 7-10 kb recognized by a probe for highly conserved nucleotide-binding domain (NBD) sequences of ATP-binding cassette (ABC) proteins; (iii) increased abundance, as measured by RNase protection assay, of mRNA fragments homologous to a NBD cRNA probe; and (iv) dramatic overexpression, as measured by Western blotting and immunofluorescence, of a group of 150- to 200-kDa plasma membrane proteins recognized by a monoclonal antibody against a region flanking the highly conserved NBD of mdr/P-glycoproteins. Finally, Xenopus laevis oocytes injected with mRNA from resistant cells and incubated with [14C]GCE secreted radiolabel more rapidly than did control oocytes. Enhanced secretion of glycocholic acid in this cell line is associated with overexpression of ABC/mdr-related proteins, some of which are apparently novel and are likely to include a bile acid transport protein.