3 resultados para Acide de Lewis
em National Center for Biotechnology Information - NCBI
Resumo:
B1(dsFv)-PE33 is a recombinant immunotoxin composed of a mutant form of Pseudomonas exotoxin (PE) that does not need proteolytic activation and a disulfide-stabilized Fv fragment of the anti-Lewis(y) monoclonal antibody B1, which recognizes a carbohydrate epitope on human carcinoma cells. In this molecule, amino acids 1-279 of PE are deleted and domain Ib (amino acids 365-394) is replaced by the heavy chain variable region (VH) domain of monoclonal antibody B1. The light chain (VL) domain is connected to the VH domain by a disulfide bond. This recombinant toxin, termed B1(dsFv)-PE33, does not require proteolytic activation and it is smaller than other immunotoxins directed at Lewis(y), all of which require proteolytic activation. Furthermore, it is more cytotoxic to antigen-positive cell lines. B1(dsFv)-PE38 has the highest antitumor activity of anti-Lewis(y) immunotoxins previously constructed. B1(dsFv)-PE33 caused complete regression of tumors when given at 12 micrograms/kg (200 pmol/kg) every other day for three doses, whereas B1(dsFv)-PE38 did not cause regressions at 13 micrograms/kg (200 pmol/kg). By bypassing the need for proteolytic activation and decreasing molecular size we have enlarged the therapeutic window for the treatment of human cancers growing in mice, so that complete remissions are observed at 2.5% of the LD50.
Resumo:
Predominant usage of V beta 8.2 gene segments, encoding a T-cell receptor (TCR) beta chain variable region, has been reported for pathogenic Lewis rat T cells reactive to myelin basic protein (MBP). However, up to 75% of the alpha/beta T cells in a panel of MBP-specific T-cell lines did not display TCR V beta 8.2, V beta 8.5, V beta 10, or V beta 16 elements. To further investigate TCR usage, we sorted the T-cell lines for V beta 8.2- and V beta 10-positive T cells or depleted the lines of cells with these TCRs. V beta 8.2-positive T cells and one of the depleted T-cell lines strongly reacted against the MBP peptide MBP-(68-88). The depleted T-cell line caused marked experimental autoimmune encephalomyelitis (EAE) even in Lewis rats in which endogenous V beta 8.2-positive T cells had been eliminated by neonatal treatment with anti-V beta 8.2 monoclonal antibodies. T-cell hybridomas generated from this line predominantly used V beta 3 TCR genes coexpressed with TCR V alpha 2 transcripts, which were also used by V beta 8.2-positive T cells. Furthermore, V beta 10-positive T cells reactive to MBP-(44-67) were encephalitogenic when injected immediately after positive selection. After induction of EAE by sorted V beta 8.2- or V beta 10-positive T-cell lines, immunocytochemical analysis of the spinal cord tissue showed a predominance of the injected TCR or of nontypable alpha/beta T cells after injection of the depleted line. Our results demonstrate heterogeneity of TCR beta-chain usage even for a single autoantigen in an inbred strain. Moreover, V beta 8.2-positive T cells are not essential for the induction and progression of adoptive-transfer EAE.
Resumo:
Inhibitors of glycosylation provide a tool for studying the biology of glycoconjugates. One class of inhibitors consists of glycosides that block glycoconjugate synthesis by acting as primers of free oligosaccharide chains. A typical primer contains one sugar linked to a hydrophobic aglycone. In this report, we describe a way to use disaccharides as primers. Chinese hamster ovary cells readily take up glycosides containing a pentose linked to naphthol, but they take up hexosides less efficiently and disaccharides not at all. Linking phenanthrol to a hexose improves its uptake dramatically but has no effect on disaccharides. To circumvent this problem, analogs of Xyl beta 1-->6Gal beta-O-2-naphthol were tested as primers of glycosaminoglycan chains. The unmodified disaccharide did not prime, but methylated derivatives had activity in the order Xyl beta 1-->6Gal(Me)3-beta-O-2-naphthol > Xyl beta 1-->6Gal (Me)2 beta-O-2-naphthol >> Xyl beta 1-->6Gal(Me)beta-O-2-naphthol. Acetylated Xyl beta 1-->6Gal beta-O-2-naphthol also primed glycosaminoglycans efficiently, suggesting that the terminal xylose residue was exposed by removing the acetyl groups. The general utility of using acetyl groups to create disaccharide primers was shown by the priming of oligosaccharides on peracetylated Gal beta 1-->4GlcNAc beta-O-naphthalenemethanol. This disaccharide inhibited sialyl Lewis X expression on HL-60 cells.