3 resultados para Acid Dye

em National Center for Biotechnology Information - NCBI


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have simultaneously measured the expression of postsynaptic γ-aminobutyric acid type A (GABAA) receptor clusters and of presynaptic boutons in neonatal rat hippocampal cultures between days 1 and 30. GABAA receptors were labeled with antibodies recognizing the extracellular domains of β2/3 and γ2 subunits. Boutons were visualized by activity-dependent uptake of the styryl dye FM4-64, or by antibodies against the presynaptic vesicular protein SV2 or the GABA-synthesizing enzyme glutamic acid decarboxylase (GAD). GABAA receptor clusters could be seen in living neurons already 6 h after culturing, much before presynaptic markers could be identified in nerve terminals. The densities of receptor clusters that contained the β2/3 subunits were constant between days 10 and 30 in culture, whereas γ2 subunit-containing clusters fluctuated and reached a maximum on day 20. SV2 and GAD staining could be measured from day 2 onwards. Clustering of GAD in presynaptic terminals and FM4-64 uptake were observed only at day 5 and afterward. SV2 staining and FM4-64 uptake increased in parallel between days 5 and 20 and remained constant thereafter. GAD-stained boutons were fewer than those labeled with other, less specific, presynaptic stains. They reached a maximum on day 20 and fell again toward day 30. Double labeling of GABAA receptors and of presynaptic boutons in neurons during differentiation showed that, even after 30 days in culture, large fractions of GABAA receptor clusters containing β2/3 and/or γ2 subunits remained extrasynaptic.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Al-resistant (alr) mutants of Arabidopsis thaliana were isolated and characterized to gain a better understanding of the genetic and physiological mechanisms of Al resistance. alr mutants were identified on the basis of enhanced root growth in the presence of levels of Al that strongly inhibited root growth in wild-type seedlings. Genetic analysis of the alr mutants showed that Al resistance was semidominant, and chromosome mapping of the mutants with microsatellite and random amplified polymorphic DNA markers indicated that the mutants mapped to two sites in the Arabidopsis genome: one locus on chromosome 1 (alr-108, alr-128, alr-131, and alr-139) and another on chromosome 4 (alr-104). Al accumulation in roots of mutant seedlings was studied by staining with the fluorescent Al-indicator dye morin and quantified via inductively coupled argon plasma mass spectrometry. It was found that the alr mutants accumulated lower levels of Al in the root tips compared with wild type. The possibility that the mutants released Al-chelating organic acids was examined. The mutants that mapped together on chromosome 1 released greater amounts of citrate or malate (as well as pyruvate) compared with wild type, suggesting that Al exclusion from roots of these alr mutants results from enhanced organic acid exudation. Roots of alr-104, on the other hand, did not exhibit increased release of malate or citrate, but did alkalinize the rhizosphere to a greater extent than wild-type roots. A detailed examination of Al resistance in this mutant is described in an accompanying paper (J. Degenhardt, P.B. Larsen, S.H. Howell, L.V. Kochian [1998] Plant Physiol 117: 19–27).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abscisic acid (ABA) modulates the activities of three major classes of ion channels--inward- and outward-rectifying K+ channels (IK,in and IK,out, respectively) and anion channels--at the guard-cell plasma membrane to achieve a net efflux of osmotica and stomatal closure. Disruption of ABA sensitivity in wilty abi1-1 mutants of Arabidopsis and evidence that this gene encodes a protein phosphatase suggest that protein (de)-phosphorylation contributes to guard-cell transport control by ABA. To pinpoint the role of ABI1, the abi1-1 dominant mutant allele was stably transformed into Nicotiana benthamiana and its influence on IK,in, IK,out, and the anion channels was monitored in guard cells under voltage clamp. Compared with guard cells from wild-type and vector-transformed control plants, expression of the abi1-1 gene was associated with 2- to 6-fold reductions in IK,out and an insensitivity of both IK,in and IK,out to 20 microM ABA. In contrast, no differences between control and abi1-1 transgenic plants were observed in the anion current or its response to ABA. Parallel measurements of intracellular pH (pHi) using the fluorescent dye 2',7'-bis(2-carboxyethyl)-5-(and -6)-carboxyfluorescein (BCECF) in every case showed a 0.15- to 0.2-pH-unit alkalinization in ABA, demonstrating that the transgene was without effect on the pHi signal that mediates in ABA-evoked K+ channel control. In guard cells from the abi1-1 transformants, normal sensitivity of both K+ channels to and stomatal closure in ABA was recovered in the presence of 100 microM H7 and 0.5 microM staurosporine, both broad-range protein kinase antagonists. These results demonstrate an aberrant K+ channel behavior--including channel insensitivity to ABA-dependent alkalinization of pHi--as a major consequence of abi1-1 action and implicate AB11 as part of a phosphatase/kinase pathway that modulates the sensitivity of guard-cell K+ channels to ABA-evoked signal cascades.