23 resultados para Acerola fruit

em National Center for Biotechnology Information - NCBI


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The piggyBac (IFP2) short inverted terminal repeat transposable element from the cabbage looper Trichoplusia ni was tested for gene transfer vector function as part of a bipartite vector–helper system in the Mediterranean fruit fly Ceratitis capitata. A piggyBac vector marked with the medfly white gene was tested with a normally regulated piggyBac transposase helper at two different concentrations in a white eye host strain. Both experiments yielded transformants at an approximate frequency of 3–5%, with a total of six lines isolated having pigmented eyes with various levels of coloration. G1 transformant siblings from each line shared at least one common integration, with several sublines having an additional second integration. For the first transformant line isolated, two integrations were determined to be stable for 15 generations. For five of the lines, a piggyBac-mediated transposition was verified by sequencing the insertion site junctions isolated by inverse PCR that identified a characteristic piggyBac TTAA target site duplication. The efficient and stable transformation of the medfly with a lepidopteran vector represents transposon function over a relatively large evolutionary distance and suggests that the piggyBac system will be functional in a broad range of insects.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A high-resolution physical and genetic map of a major fruit weight quantitative trait locus (QTL), fw2.2, has been constructed for a region of tomato chromosome 2. Using an F2 nearly isogenic line mapping population (3472 individuals) derived from Lycopersicon esculentum (domesticated tomato) × Lycopersicon pennellii (wild tomato), fw2.2 has been placed near TG91 and TG167, which have an interval distance of 0.13 ± 0.03 centimorgan. The physical distance between TG91 and TG167 was estimated to be ≤ 150 kb by pulsed-field gel electrophoresis of tomato DNA. A physical contig composed of six yeast artificial chromosomes (YACs) and encompassing fw2.2 was isolated. No rearrangements or chimerisms were detected within the YAC contig based on restriction fragment length polymorphism analysis using YAC-end sequences and anchored molecular markers from the high-resolution map. Based on genetic recombination events, fw2.2 could be narrowed down to a region less than 150 kb between molecular markers TG91 and HSF24 and included within two YACs: YAC264 (210 kb) and YAC355 (300 kb). This marks the first time, to our knowledge, that a QTL has been mapped with such precision and delimited to a segment of cloned DNA. The fact that the phenotypic effect of the fw2.2 QTL can be mapped to a small interval suggests that the action of this QTL is likely due to a single gene. The development of the high-resolution genetic map, in combination with the physical YAC contig, suggests that the gene responsible for this QTL and other QTLs in plants can be isolated using a positional cloning strategy. The cloning of fw2.2 will likely lead to a better understanding of the molecular biology of fruit development and to the genetic engineering of fruit size characteristics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A reverse transcriptase-polymerase chain reaction experiment was done to synthesize a homologous polyphenol oxidase (PPO) probe from apricot (Prunus armeniaca var Bergeron) fruit. This probe was further used to isolate a full-length PPO cDNA, PA-PPO (accession no. AF020786), from an immature-green fruit cDNA library. PA-PPO is 2070 bp long and contains a single open reading frame encoding a PPO precursor peptide of 597 amino acids with a calculated molecular mass of 67.1 kD and an isoelectric point of 6.84. The mature protein has a predicted molecular mass of 56.2 kD and an isoelectric point of 5.84. PA-PPO belongs to a multigene family. The gene is highly expressed in young, immature-green fruit and is turned off early in the ripening process. The ratio of PPO protein to total proteins per fruit apparently remains stable regardless of the stage of development, whereas PPO specific activity peaks at the breaker stage. These results suggest that, in addition to a transcriptional control of PPO expression, other regulation factors such as translational and posttranslational controls also occur.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An allele of the 1-aminocyclopropane-1-carboxylic acid (ACC) synthase gene (Md-ACS1), the transcript and translated product of which have been identified in ripening apples (Malus domestica), was isolated from a genomic library of the apple cultivar, Golden Delicious. The predicted coding region of this allele (ACS1-2) showed that seven nucleotide substitutions in the corresponding region of ACS1-1 resulted in just one amino acid transition. A 162-bp sequence characterized as a short interspersed repetitive element retrotransposon was inserted in the 5′-flanking region of ACS1-2 corresponding to position −781 in ACS1-1. The XhoI site located near the 3′ end of the predicted coding region of ACS1-2 was absent from the reverse transcriptase-polymerase chain reaction product, revealing that exclusive transcription from ACS1-1 occurs during ripening of cv Golden Delicious fruit. DNA gel-blot and polymerase chain reaction analyses of genomic DNAs showed clearly that apple cultivars were either heterozygous for ACS1-1 and ACS1-2 or homozygous for each type. RNA gel-blot analysis of the ACS1-2 homozygous Fuji apple, which produces little ethylene and has a long storage life, demonstrated that the level of transcription from ACS1-2 during the ripening stage was very low.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two cDNAs clones (Cel1 and Cel2) encoding divergent endo-β-1,4-glucanases (EGases) have been isolated from a cDNA library obtained from ripe strawberry (Fragaria x ananassa Duch) fruit. The analysis of the amino acid sequence suggests that Cel1 and Cel2 EGases have different secondary and tertiary structures and that they differ in the presence of potential N-glycosylation sites. By in vitro translation we show that Cel1 and Cel2 bear a functional signal peptide, the cleavage of which yields mature proteins of 52 and 60 kD, respectively. Phylogenetic analysis revealed that the Cel2 EGase diverged early in evolution from other plant EGases. Northern analysis showed that both EGases are highly expressed in fruit and that they have different temporal patterns of accumulation. The Cel2 EGase was expressed in green fruit, accumulating as the fruit turned from green to white and remaining at an elevated, constant level throughout fruit ripening. In contrast, the Cel1 transcript was not detected in green fruit and only a low level of expression was observed in white fruit. The level of Cel1 mRNA increased gradually during ripening, reaching a maximum in fully ripe fruit. The high levels of Cel1 and Cel2 mRNA in ripe fruit and their overlapping patterns of expression suggest that these EGases play an important role in softening during ripening. In addition, the early expression of Cel2 in green fruit, well before significant softening begins, suggests that the product of this gene may also be involved in processes other than fruit softening, e.g. cell wall expansion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The cucurbits translocate the galactosyl-sucrose oligosaccharides raffinose and stachyose, therefore, α-galactosidase (α-d-galactoside galactohydrolase, EC 3.2.1.22) is expected to function as the initial enzyme of photoassimilate catabolism. However, the previously described alkaline α-galactosidase is specific for the tetrasaccharide stachyose, leaving raffinose catabolism in these tissues as an enigma. In this paper we report the partial purification and characterization of three α-galactosidases, including a novel alkaline α-galactosidase (form I) from melon (Cucumis melo) fruit tissue. The form I enzyme showed preferred activity with raffinose and significant activity with stachyose. Other unique characteristics of this enzyme, such as weak product inhibition by galactose (in contrast to the other α-galactosidases, which show stronger product inhibition), also impart physiological significance. Using raffinose and stachyose as substrates in the assays, the activities of the three α-galactosidases (alkaline form I, alkaline form II, and the acid form) were measured at different stages of fruit development. The form I enzyme activity increased during the early stages of ovary development and fruit set, in contrast to the other α-galactosidase enzymes, both of which declined in activity during this period. In the mature, sucrose-accumulating mesocarp, the alkaline form I enzyme was the major α-galactosidase present. We also observed hydrolysis of raffinose at alkaline conditions in enzyme extracts from other cucurbit sink tissues, as well as from young Coleus blumei leaves. Our results suggest different physiological roles for the α-galactosidase forms in the developing cucurbit fruit, and show that the newly discovered enzyme plays a physiologically significant role in photoassimilate partitioning in cucurbit sink tissue.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Regulation of isoprenoid end-product synthesis required for normal growth and development in plants is not well understood. To investigate the extent to which specific genes for the enzyme 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR) are involved in end-product regulation, we manipulated expression of the HMG1 and HMG2 genes in tomato (Lycopersicon esculentum) fruit using arachidonic acid (AA). In developing young fruit AA blocked fruit growth, inhibited HMG1, and activated HMG2 expression. These results are consistent with other reports indicating that HMG1 expression is closely correlated with growth processes requiring phytosterol production. In mature-green fruit AA strongly induced the expression of HMG2, PSY1 (the gene for phytoene synthase), and lycopene accumulation before the normal onset of carotenoid synthesis and ripening. The induction of lycopene synthesis was not blocked by inhibition of HMGR activity using mevinolin, suggesting that cytoplasmic HMGR is not required for carotenoid synthesis. Our results are consistent with the function of an alternative plastid isoprenoid pathway (the Rohmer pathway) that appears to direct the production of carotenoids during tomato fruit ripening.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigated the feedback regulation of ethylene biosynthesis in tomato (Lycopersicon esculentum) fruit with respect to the transition from system 1 to system 2 ethylene production. The abundance of LE-ACS2, LE-ACS4, and NR mRNAs increased in the ripening fruit concomitant with a burst in ethylene production. These increases in mRNAs with ripening were prevented to a large extent by treatment with 1-methylcyclopropene (MCP), an ethylene action inhibitor. Transcripts for the LE-ACS6 gene, which accumulated in preclimacteric fruit but not in untreated ripening fruit, did accumulate in ripening fruit treated with MCP. Treatment of young fruit with propylene prevented the accumulation of transcripts for this gene. LE-ACS1A, LE-ACS3, and TAE1 genes were expressed constitutively in the fruit throughout development and ripening irrespective of whether the fruit was treated with MCP or propylene. The transcripts for LE-ACO1 and LE-ACO4 genes already existed in preclimacteric fruit and increased greatly when ripening commenced. These increases in LE-ACO mRNA with ripening were also prevented by treatment with MCP. The results suggest that in tomato fruit the preclimacteric system 1 ethylene is possibly mediated via constitutively expressed LE-ACS1A and LE-ACS3 and negatively feedback-regulated LE-ACS6 genes with preexisting LE-ACO1 and LE-ACO4 mRNAs. At the onset of the climacteric stage, it shifts to system 2 ethylene, with a large accumulation of LE-ACS2, LE-ACS4, LE-ACO1, and LE-ACO4 mRNAs as a result of a positive feedback regulation. This transition from system 1 to system 2 ethylene production might be related to the accumulated level of NR mRNA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fruit tissues of tomato (Lycopersicon esculentum Mill.) contain both photosynthetic and heterotrophic ferredoxin (FdA and FdE, respectively) isoproteins, irrespective of their photosynthetic competence, but we did not previously determine whether these proteins were colocalized in the same plastids. In isolated fruit chloroplasts and chromoplasts, both FdA and FdE were detected by immunoblotting. Colocalization of FdA and FdE in the same plastids was demonstrated using double-staining immunofluorescence microscopy. We also found that FdA and FdE were colocalized in fruit chloroplasts and chloroamyloplasts irrespective of sink status of the plastid. Immunoelectron microscopy demonstrated that FdA and FdE were randomly distributed within the plastid stroma. To investigate the significance of the heterotrophic Fd in fruit plastids, Glucose 6-phosphate dehydrogenase (G6PDH) activity was measured in isolated fruit and leaf plastids. Fruit chloroplasts and chromoplasts showed much higher G6PDH activity than did leaf chloroplasts, suggesting that high G6PDH activity is linked with FdE to maintain nonphotosynthetic production of reducing power. This result suggested that, despite their morphological resemblance, fruit chloroplasts are functionally different from their leaf counterparts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The hydrolysis of cell wall pectins by tomato (Lycopersicon esculentum) polygalacturonase (PG) in vitro is more extensive than the degradation affecting these polymers during ripening. We examined the hydrolysis of polygalacturonic acid and cell walls by PG isozyme 2 (PG2) under conditions widely adopted in the literature (pH 4.5 and containing Na+) and under conditions approximating the apoplastic environment of tomato fruit (pH 6.0 and K+ as the predominate cation). The pH optima for PG2 in the presence of K+ were 1.5 and 0.5 units higher for the hydrolysis of polygalacturonic acid and cell walls, respectively, compared with activity in the presence of Na+. Increasing K+ concentration stimulated pectin solubilization at pH 4.5 but had little influence at pH 6.0. Pectin depolymerization by PG2 was extensive at pH values from 4.0 to 5.0 and was further enhanced at high K+ levels. Oligomers were abundant products in in vitro reactions at pH 4.0 to 5.0, decreased sharply at pH 5.5, and were negligible at pH 6.0. EDTA stimulated PG-mediated pectin solubilization at pH 6.0 but did not promote oligomer production. Ca2+ suppressed PG-mediated pectin release at pH 4.5 yet had minimal influence on the proportional recovery of oligomers. Extensive pectin breakdown in processed tomato might be explained in part by cation- and low-pH-induced stimulation of PG and other wall-associated enzymes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tomato (Lycopersicon esculentum) plants were transformed with gene constructs containing a tomato alcohol dehydrogenase (ADH) cDNA (ADH 2) coupled in a sense orientation with either the constitutive cauliflower mosaic virus 35S promoter or the fruit-specific tomato polygalacturonase promoter. Ripening fruit from plants transformed with the constitutively expressed transgene(s) had a range of ADH activities; some plants had no detectable activity, whereas others had significantly higher ADH activity, up to twice that of controls. Transformed plants with fruit-specific expression of the transgene(s) also displayed a range of enhanced ADH activities in the ripening fruit, but no suppression was observed. Modified ADH levels in the ripening fruit influenced the balance between some of the aldehydes and the corresponding alcohols associated with flavor production. Hexanol and Z-3-hexenol levels were increased in fruit with increased ADH activity and reduced in fruit with low ADH activity. Concentrations of the respective aldehydes were generally unaltered. The phenotypes of modified fruit ADH activity and volatile abundance were transmitted to second-generation plants in accordance with the patterns of inheritance of the transgenes. In a preliminary taste trial, fruit with elevated ADH activity and higher levels of alcohols were identified as having a more intense “ripe fruit” flavor.