5 resultados para Accumulation rate in ice equivalent per year
em National Center for Biotechnology Information - NCBI
Resumo:
In salt-stressed ice plants (Mesembryanthemum crystallinum), sodium accumulates to high concentrations in vacuoles, and polyols (myo-inositol, d-ononitol, and d-pinitol) accumulate in the cytosol. Polyol synthesis is regulated by NaCl and involves induction and repression of gene expression (D.E. Nelson, B. Shen, and H.J. Bohnert [1998] Plant Cell 10: 753–764). In the study reported here we found increased phloem transport of myo-inositol and reciprocal increased transport of sodium and inositol to leaves under stress. To determine the relationship between increased translocation and sodium uptake, we analyzed the effects of exogenous application of myo-inositol: The NaCl-inducible ice plant myo-inositol 1-phosphate synthase is repressed in roots, and sodium uptake from root to shoot increases without stimulating growth. Sodium uptake and transport through the xylem was coupled to a 10-fold increase of myo-inositol and ononitol in the xylem. Seedlings of the ice plant are not salt-tolerant, and yet the addition of exogenous myo-inositol conferred upon them patterns of gene expression and polyol accumulation observed in mature, salt-tolerant plants. Sodium uptake and transport through the xylem was enhanced in the presence of myo-inositol. The results indicate an interdependence of sodium uptake and alterations in the distribution of myo-inositol. We hypothesize that myo-inositol could serve not only as a substrate for the production of compatible solutes but also as a leaf-to-root signal that promotes sodium uptake.
Resumo:
The reaction center (RC) from Rhodobacter sphaeroides converts light into chemical energy through the reduction and protonation of a bound quinone molecule QB (the secondary quinone electron acceptor). We investigated the proton transfer pathway by measuring the proton-coupled electron transfer, kAB(2) [QA⨪QB⨪ + H+ → QA(QBH)−] in native and mutant RCs in the absence and presence of Cd2+. Previous work has shown that the binding of Cd2+ decreases kAB(2) in native RCs ≈100-fold. The preceding paper shows that bound Cd2+ binds to Asp-H124, His-H126, and His-H128. This region represents the entry point for protons. In this work we investigated the proton transfer pathway connecting the entry point with QB⨪ by searching for mutations that greatly affect kAB(2) (≳10-fold) in the presence of Cd2+, where kAB(2) is limited by the proton transfer rate (kH). Upon mutation of Asp-L210 or Asp-M17 to Asn, kH decreased from ≈60 s−1 to ≈7 s−1, which shows the important role that Asp-L210 and Asp-M17 play in the proton transfer chain. By comparing the rate of proton transfer in the mutants (kH ≈ 7 s−1) with that in native RCs in the absence of Cd2+ (kH ≥ 104 s−1), we conclude that alternate proton transfer pathways, which have been postulated, are at least 103-fold less effective.
Resumo:
Ewes from the Booroola strain of Australian Mérino sheep are characterized by high ovulation rate and litter size. This phenotype is due to the action of the FecBB allele of a major gene named FecB, as determined by statistical analysis of phenotypic data. By genetic analysis of 31 informative half-sib families from heterozygous sires, we showed that the FecB locus is situated in the region of ovine chromosome 6 corresponding to the human chromosome 4q22–23 that contains the bone morphogenetic protein receptor IB (BMPR-IB) gene encoding a member of the transforming growth factor-β (TGF-β) receptor family. A nonconservative substitution (Q249R) in the BMPR-IB coding sequence was found to be associated fully with the hyperprolificacy phenotype of Booroola ewes. In vitro, ovarian granulosa cells from FecBB/FecBB ewes were less responsive than granulosa cells from FecB+/FecB+ ewes to the inhibitory effect on steroidogenesis of GDF-5 and BMP-4, natural ligands of BMPR-IB. It is suggested that in FecBB/FecBB ewes, BMPR-IB would be inactivated partially, leading to an advanced differentiation of granulosa cells and an advanced maturation of ovulatory follicles.
Resumo:
Air trapped in glacial ice offers a means of reconstructing variations in the concentrations of atmospheric gases over time scales ranging from anthropogenic (last 200 yr) to glacial/interglacial (hundreds of thousands of years). In this paper, we review the glaciological processes by which air is trapped in the ice and discuss processes that fractionate gases in ice cores relative to the contemporaneous atmosphere. We then summarize concentration–time records for CO2 and CH4 over the last 200 yr. Finally, we summarize concentration–time records for CO2 and CH4 during the last two glacial–interglacial cycles, and their relation to records of global climate change.