2 resultados para Acartia amboinensis, female, length

em National Center for Biotechnology Information - NCBI


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Swordtail fish (Poeciliidae: genus Xiphophorus) are a paradigmatic case of sexual selection by sensory exploitation. Female preference for males with a conspicuous “sword” ornament is ancestral, suggesting that male morphology has evolved in response to a preexisting bias. The perceptual mechanisms underlying female mate choice have not been identified, complicating efforts to understand the selection pressures acting on ornament design. We consider two alternative models of receiver behavior, each consistent with previous results. Females could respond either to specific characteristics of the sword or to more general cues, such as the apparent size of potential mates. We showed female swordtails a series of computer-altered video sequences depicting a courting male. Footage of an intact male was preferred strongly to otherwise identical sequences in which portions of the sword had been deleted selectively, but a disembodied courting sword was less attractive than an intact male. There was no difference between responses to an isolated sword and to a swordless male of comparable length, or between an isolated sword and a homogenous background. Female preference for a sworded male was abolished by enlarging the image of a swordless male to compensate for the reduction in length caused by removing the ornament. This pattern of results is consistent with mate choice being mediated by a general preference for large males rather than by specific characters. Similar processes may account for the evolution of exaggerated traits in other systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, a reverse-transcriptase PCR-based protocol suitable for efficient expression analysis of multigene families is presented. The method combines restriction fragment length polymorphism (RFLP) technology with a gene family-specific version of mRNA differential display and hence is called "RFLP-coupled domain-directed differential display. "With this method, expression of all members of a multigene family at many different developmental stages, in diverse tissues and even in different organisms, can be displayed on one gel. Moreover, bands of interest, representing gene family members, are directly accessible to sequence analysis, without the need for subcloning. The method thus enables a detailed, high-resolution expression analysis of known gene family members as well as the identification and characterization of new ones. Here the technique was used to analyze differential expression of MADS-box genes in male and female inflorescences of maize (Zea mays ssp. mays). Six different MADS-box genes could be identified, being either specifically expressed in the female sex or preferentially expressed in male or female inflorescences, respectively. Other possible applications of the method are discussed.