127 resultados para AUTOIMMUNE
em National Center for Biotechnology Information - NCBI
Resumo:
The activity of copolymer 1 (Cop 1, Copaxone, glatiramer acetate) in suppressing experimental autoimmune encephalomyelitis (EAE) and in the treatment of multiple sclerosis patients when injected parenterally has been extensively demonstrated. In the present study we addressed the question of whether Cop 1 can induce oral tolerance to EAE similar to myelin basic protein (MBP). We now have demonstrated that oral Cop 1 inhibited EAE induction in both rats and mice. Furthermore, oral Cop 1 was more effective than oral MBP in suppressing EAE in rats. The beneficial effect of oral Cop 1 was found to be associated with specific inhibition of the proliferative and Th1 cytokine secretion responses to MBP of spleen cells from Cop 1-fed mice and rats. In all of these assays, oral Cop 1 was more effective than oral MBP. The tolerance induced by Cop 1 could be adoptively transferred with spleen cells from Cop 1-fed animals. Furthermore, Cop 1-specific T cell lines, which inhibit EAE induction in vivo, could be isolated from the above spleen cells. These T cell lines secrete the anti-inflammatory cytokines IL-10 and transforming growth factor type β, but not IL-4, in response to both Cop 1 and MBP. In conclusion, oral Cop 1 has a beneficial effect on the development of EAE that is associated with down-regulation of T cell immune responses to MBP and is mediated by Th2/3 type regulatory cells. These results suggest that oral administration of Cop 1 may modulate multiple sclerosis as well.
Resumo:
Experimental autoimmune encephalomyelitis (EAE) is a T cell autoimmune disorder that is a widely used animal model for multiple sclerosis (MS) and, as in MS, clinical signs of EAE are associated with blood–brain barrier (BBB) disruption. SR 57746A, a nonpeptide drug without classical immunosuppressive properties, efficiently protected the BBB and impaired intrathecal IgG synthesis (two conventional markers of MS exacerbation) and consequently suppressed EAE clinical signs. This compound inhibited EAE-induced spinal cord mononuclear cell invasion and normalized tumor necrosis factor α and IFN-γ mRNA expression within the spinal cord. These data suggested that pharmacological intervention aimed at inhibiting proinflammatory cytokine expression within the central nervous system provided protection against BBB disruption, the first clinical sign of EAE and probably the key point of acute MS attacks. This finding could lead to the development of a new class of compounds for oral therapy of MS, as a supplement to immunosuppressive agents.
Resumo:
Experimental autoimmune encephalomyelitis (EAE) induced with myelin proteolipid protein (PLP) residues 139–151 (HSLGKWLGHPDKF) can be prevented by treatment with a T cell receptor (TCR) antagonist peptide (L144/R147) generated by substituting at the two principal TCR contact residues in the encephalitogenic peptide. The TCR antagonist peptide blocks activation of encephalitogenic Th1 helper cells in vitro, but the mechanisms by which the antagonist peptide blocks EAE in vivo are not clear. Immunization with L144/R147 did not inhibit generation of PLP-(139–151)-specific T cells in vivo. Furthermore, preimmunization with L144/R147 protected mice from EAE induced with the encephalitogenic peptides PLP-(178–191) and myelin oligodendrocyte protein (MOG) residues 92–106 and with mouse myelin basic protein (MBP). These data suggest that the L144/R147 peptide does not act as an antagonist in vivo but mediates bystander suppression, probably by the generation of regulatory T cells. To confirm this we generated T cell lines and clones from animals immunized with PLP-(139–151) plus L144/R147. T cells specific for L144/R147 peptide were crossreactive with the native PLP-(139–151) peptide, produced Th2/Th0 cytokines, and suppressed EAE upon adoptive transfer. These studies demonstrate that TCR antagonist peptides may have multiple biological effects in vivo. One of the principal mechanisms by which these peptides inhibit autoimmunity is by the induction of regulatory T cells, leading to bystander suppression of EAE. These results have important implications for the treatment of autoimmune diseases where there are autopathogenic responses to multiple antigens in the target organ.
Resumo:
The Fas/Fas ligand (FasL) system participates in regulation of the immune system through the apoptotic process. However, the extent to which abnormalities in this system are involved in the loss of self-tolerance and development of autoimmune disease not associated with Fas/FasL mutations remains unknown. The present study addresses this issue in Fas/FasL-intact, systemic lupus erythematosus (SLE)-prone (NZB × NZW) (NZB/W) F1 mice. While splenic B cells from 2-month-old mice before overt SLE expressed Fas poorly, in vitro stimulation with an agonistic anti-CD40 mAb up-regulated their Fas expression, thus revealing the existence of two populations: one was Fashigh and highly susceptible to anti-Fas mAb-induced apoptosis, and the other was Faslow and apoptosis-resistant. The Faslow cells were included in the CD5+ B cell subpopulation and contained most of the cells that produced IgM anti-DNA antibodies. The isotype of anti-DNA antibodies switches from IgM to IgG in NZB/W F1 mice at ages beginning at about 6 months. These IgG anti-DNA antibodies were produced almost exclusively by a subpopulation of splenic B cells that spontaneously expressed low levels of Fas in vivo and were apoptosis-resistant. The findings indicate that precursor B cells for autoantibody production and presumably autoantibody-secreting cells in these mice are relatively resistant to Fas-mediated apoptosis, a finding supporting the concept that abnormalities of Fas-mediated apoptotic process are involved in the development of autoreactive B cells in Fas/FasL-intact autoimmune disease.
Resumo:
The adenovirus (Ad) genome contains immunoregulatory and cytokine inhibitory genes that are presumed to function in facilitating acute infection or in establishing persistence in vivo. Some of these genes are clustered in early region 3 (E3), which contains a 19-kDa glycoprotein (gp19) that inhibits the transport of selected class I major histocompatibility complex (MHC) molecules out of the endoplasmic reticulum. In addition, the E3 region contains three protein inhibitors of the cytolytic function of tumor necrosis factor α (TNF-α). Because type I autoimmune diabetes destroys islets by mechanisms that involve class I MHC and TNF-α, we investigated whether the entire cassette of Ad E3 genes might prevent the onset of diabetes in a well studied lymphocytic choriomeningitis viral (LCMV) murine model of virus-induced autoimmune diabetes. In this model, a LCMV polypeptide (either glycoprotein or nucleoprotein) expressed as a transgene in the islets is a target for autoimmune destruction of β cells after LCMV infection. In this scenario the LCMV-induced immune response is directed not only against the virus but also against the LCMV transgenes expressed in the β cells. Our experiments demonstrated a very efficient prevention of this LCMV-triggered diabetes by the Ad E3 genes. This resulted from the inhibition of target cell recognition by a fully competent and LCMV-primed immune system. Unlike the results from the β-2 microglobulin gene deletion experiments, our approach shows that selective regulation at the level of the target cell is sufficient to prevent autoimmune diabetes without disrupting the function of the systemic immune response. Although the Ad genes in these experiments were provided as transgenes, recent experiments may permit the introduction of such genes through the use of viral vectors. Although the decrease in class I MHC in islets by Ad genes was demonstrated in these in vivo studies, the relative importance of this process and the control of TNF-α cytolysis must await further genetic dissection of the introduced Ad genes.
Resumo:
The synthetic amino acid copolymer copolymer 1 (Cop 1) suppresses experimental autoimmune encephalomyelitis (EAE) and is beneficial in multiple sclerosis. To further understand Cop 1 suppressive activity, we studied the cytokine secretion profile of various Cop 1-induced T cell lines and clones. Unlike T cell lines induced by myelin basic protein (MBP), which secreted either T cell helper type 1 (Th1) or both Th1 and Th2 cytokines, the T cell lines/clones induced by Cop 1 showed a progressively polarized development toward the Th2 pathway, until they completely lost the ability to secrete Th1 cytokines. Our findings indicate that the polarization of the Cop 1-induced lines did not result from the immunization vehicle or the in vitro growing conditions, but rather from the tendency of Cop 1 to preferentially induce a Th2 response. The response of all of the Cop 1 specific lines/clones, which were originated in the (SJL/J×BALB/c)F1 hybrids, was restricted to the BALB/c parental haplotype. Even though the Cop 1-induced T cells had not been exposed to the autoantigen MBP, they crossreacted with MBP by secretion of interleukin (IL)-4, IL-6, and IL-10. Administration of these T cells in vivo resulted in suppression of EAE induced by whole mouse spinal cord homogenate, in which several autoantigens may be involved. Secretion of anti-inflammatory cytokines by Cop 1-induced suppressor cells, in response to either Cop 1 or MBP, may explain the therapeutic effect of Cop 1 in EAE and in multiple sclerosis.
Resumo:
Transplantations of fully allogeneic, autoimmune-resistant T-cell-depleted marrow (TCDM) plus syngeneic, autoimmune-prone TCDM into lethally irradiated BXSB mice were carried out to investigate the ability of the mixed bone marrow transplantation (BMT) to prevent development of autoimmune disease and, at the same time, to reconstitute fully the immunity functions of heavily irradiated BXSB recipients. Male BXSB mice were engrafted with mixed TCDM from both allogeneic, autoimmune-resistant BALB/c mice and syngeneic, autoimmune-prone BXSB mice. BMT with mixed TCDM from both resistant and susceptible strains of mice (mixed BMT) prolonged the median life span and inhibited development of glomerulonephritis in BXSB mice. BMT with mixed TCDM also prevented the formation of anti-DNA antibodies that is typically observed in male mice of this strain. Moreover, mixed BMT reconstituted primary antibody production in BXSB recipients, so that no annoying immunodeficiencies that are regularly observed in fully allogeneic chimeras were present in the recipient of the mixed TCDM. These findings indicate that transplanting allogeneic, autoimmune-resistant TCDM plus syngeneic, autoimmune-prone TCDM into lethally irradiated BXSB mice prevents development of autoimmune disease in this strain of mice. In addition, this dual BMT reconstitutes the immunity functions and avoids the immunodeficiencies that occur regularly in fully allogeneic chimeras after total-body irradiation.
Resumo:
We demonstrate that the receptor binding moiety of Escherichia coli heat-labile enterotoxin (EtxB) can completely prevent autoimmune disease in a murine model of arthritis. Injection of male DBA/1 mice at the base of the tail with type II collagen in the presence of complete Freund’s adjuvant normally leads to arthritis, as evidenced by inflammatory infiltration and swelling of the joints. A separate injection of EtxB at the same time as collagen challenge prevented leukocyte infiltration, synovial hyperplasia, and degeneration of the articular cartilage and reduced clinical symptoms of disease by 82%. The principle biological property of EtxB is its ability to bind to the ubiquitous cell surface receptor GM1 ganglioside, and to other galactose-containing glycolipids and galactoproteins. The importance of receptor interaction in mediating protection from arthritis was demonstrated by the failure of a non-receptor-binding mutant of EtxB to elicit any protective effect. Analysis of T cell responses to collagen, in cultures of draining lymph node cells, revealed that protection was associated with a marked increase in interleukin 4 production concomitant with a reduction in interferon γ levels. Furthermore, in protected mice there was a significant reduction in anti-collagen antibody levels as well as an increase in the IgG1/IgG2a ratio. These observations show that protection is associated with a shift in the Th1/Th2 balance as well as a general reduction in the extent of the anti-type II collagen immune response. This suggests that EtxB-receptor-mediated modulation of lymphocyte responses provides a means of preventing autoimmune disease.
Resumo:
Autoimmune diseases such as systemic lupus erythematosus are complex genetic traits with contributions from major histocompatibility complex (MHC) genes and multiple unknown non-MHC genes. Studies of animal models of lupus have provided important insight into the immunopathogenesis of disease, and genetic analyses of these models overcome certain obstacles encountered when studying human patients. Genome-wide scans of different genetic crosses have been used to map several disease-linked loci in New Zealand hybrid mice. Although some consensus exists among studies mapping the New Zealand Black (NZB) and New Zealand White (NZW) loci that contribute to lupus-like disease, considerable variability is also apparent. A variable in these studies is the genetic background of the non-autoimmune strain, which could influence genetic contributions from the affected strain. A direct examination of this question was undertaken in the present study by mapping NZB nephritis-linked loci in backcrosses involving different non-autoimmune backgrounds. In a backcross with MHC-congenic C57BL/6J mice, H2z appeared to be the strongest genetic determinant of severe lupus nephritis, whereas in a backcross with congenic BALB/cJ mice, H2z showed no influence on disease expression. NZB loci on chromosomes 1, 4, 11, and 14 appeared to segregate with disease in the BALB/cJ cross, but only the influence of the chromosome 1 locus spanned both crosses and showed linkage with disease when all mice were considered. Thus, the results indicate that contributions from disease-susceptibility loci, including MHC, may vary markedly depending on the non-autoimmune strain used in a backcross analysis. These studies provide insight into variables that affect genetic heterogeneity and add an important dimension of complexity for linkage analyses of human autoimmune disease.
Resumo:
Double transgenic mice [rat insulin promoter (RIP)-tumor necrosis factor (TNF) and RIP-CD80] whose pancreatic β cells release TNF and bear CD80 all develop an acute early (6 wk) and lethal diabetes mediated by CD8 T cells. The first ultrastructural changes observed in β cells, so far unreported, are focal lesions of endoplasmic reticulum swelling at the points of contact with islet-infiltrating lymphoblasts, followed by cytoplasmic, but not nuclear, apoptosis. Such double transgenic mice were made defective in either the perforin, Fas, or TNF pathways. Remarkably, diabetes was found to be totally independent of perforin and Fas. Mice lacking TNF receptor (TNFR) II had no or late diabetes, but only a minority had severe insulitis. Mice lacking the TNF-lymphotoxin (LTα) locus (whose sole source of TNF are the β cells) all had insulitis comparable to that of nondefective mice, but no diabetes or a retarded and milder form, with lesions suggesting different mechanisms of injury. Because both TNFR II and TNF-LTα mutations have complex effects on the immune system, these data do not formally incriminate membrane TNF as the major T cell mediator of this acute autoimmune diabetes; nevertheless, in the absence of involvement of the perforin or Fas cytotoxic pathways, membrane TNF appears to be the likeliest candidate.
Resumo:
The immunodominant, CD8+ cytotoxic T lymphocyte (CTL) response to the HLA-B8-restricted peptide, RAKFKQLL, located in the Epstein–Barr virus immediate-early antigen, BZLF1, is characterized by a diverse T cell receptor (TCR) repertoire. Here, we show that this diversity can be partitioned on the basis of crossreactive cytotoxicity patterns involving the recognition of a self peptide—RSKFRQIV—located in a serine/threonine kinase and a bacterial peptide—RRKYKQII—located in Staphylococcus aureus replication initiation protein. Thus CTL clones that recognized the viral, self, and bacterial peptides expressed a highly restricted αβ TCR phenotype. The CTL clones that recognized viral and self peptides were more oligoclonal, whereas clones that strictly recognized the viral peptide displayed a diverse TCR profile. Interestingly, the self and bacterial peptides equally were substantially less effective than the cognate viral peptide in sensitizing target cell lysis, and also resulted only in a weak reactivation of memory CTLs in limiting dilution assays, whereas the cognate peptide was highly immunogenic. The described crossreactions show that human antiviral, CD8+ CTL responses can be shaped by peptide ligands derived from autoantigens and environmental bacterial antigens, thereby providing a firm structural basis for molecular mimicry involving class I-restricted CTLs in the pathogenesis of autoimmune disease.
Resumo:
The role of interferon-γ in autoimmune diabetes was assessed by breeding a null mutation of the interferon-γ receptor α chain into the nonobese diabetic mouse strain, as well as into a simplified T cell receptor transgenic model of diabetes. In contrast to a previous report on abrogation of the interferon-γ gene, mutation of the gene encoding its receptor led to drastic effects on disease in both mouse lines. Nonobese diabetic mice showed a marked inhibition of insulitis—both the kinetics and penetrance—and no signs of diabetes; the transgenic model exhibited near-normal insulitis, but this never evolved into diabetes, either spontaneously or after experimental provocation. This failure could not be explained by perturbations in the ratio of T helper cell phenotypes; rather, it reflected a defect in antigen-presenting cells or in the islet β cell targets.