4 resultados para AUREUS INFECTIONS

em National Center for Biotechnology Information - NCBI


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Many Gram-positive bacteria covalently tether their surface adhesins to the cell wall peptidoglycan. We find that surface proteins of Staphylococcus aureus are linked to the cell wall by sortase, an enzyme that cleaves polypeptides at a conserved LPXTG motif. S. aureus mutants lacking sortase fail to process and display surface proteins and are defective in the establishment of infections. Thus, the cell wall envelope of Gram-positive bacteria represents a surface organelle responsible for interactions with the host environment during the pathogenesis of bacterial infections.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A 3-yr-old female patient exhibited interleukin 12 (IL-12) deficiency that was associated with recurrent episodes of pneumococcal pneumonia with sepsis and other infections in the absence of fevers. The patient’s peripheral blood mononuclear cells (PBMCs) exhibited normal proliferative responses to antigens. Immune responses, including in vivo production of antibodies to diphtheria, tetanus, or pneumococcal antigens, were normal. Ig levels and B cell and T cell phenotypes were also normal. In contrast, IL-12 p70 heterodimer production was undetectable by using supernatants of the patient’s stimulated PBMCs when compared with control cells treated similarly. Although present, interferon γ (IFN-γ) was reduced. The addition of recombinant IFN-γ to control cells enhanced the production of IL-12 by up to sixfold. By contrast, IL-12 was undetectable in supernatants of the patient’s cells in the presence of recombinant IFN-γ. IL-12 p40 subunit mRNA by using the patient’s PBMCs after stimulation with Staphylococcus aureus Cowan strain 1 or lipopolysaccharide was also undetectable by reverse transcription–PCR when compared with control cells. Production of IL-2, IL-6, tumor necrosis factor α, or IFN-γ of the patient’s PBMCs after appropriate stimulation was observed. This patient has either a defect in Staphylococcus aureus Cowan strain 1-lipopolysaccharide- or staphylococcal enterotoxin A-induced signaling pathways for the activation of IL-12 p40 gene expression, or an abnormality in the IL-12 p40 gene itself.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Surface proteins of Gram-positive bacteria play important roles during the pathogenesis of human infections and require sortase for anchoring to the cell-wall envelope. Sortase cleaves surface proteins at the LPXTG motif and catalyzes the formation of an amide bond between the carboxyl group of threonine (T) and the amino group of cell-wall crossbridges. The NMR structure of sortase reveals a unique β-barrel structure, in which the active-site sulfhydryl of cysteine-184 is poised for ionization by histidine-120, presumably enabling the resultant thiolate to attack the LPXTG peptide. Calcium binding near the active site stimulates catalysis, possibly by altering the conformation of a surface loop that recognizes newly translocated polypeptides. The structure suggests a mechanistic relationship to the papain/cathepsin proteases and should facilitate the design of new antiinfective agents.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An emerging theme in medical microbiology is that extensive variation exists in gene content among strains of many pathogenic bacterial species. However, this topic has not been investigated on a genome scale with strains recovered from patients with well-defined clinical conditions. Staphylococcus aureus is a major human pathogen and also causes economically important infections in cows and sheep. A DNA microarray representing >90% of the S. aureus genome was used to characterize genomic diversity, evolutionary relationships, and virulence gene distribution among 36 strains of divergent clonal lineages, including methicillin-resistant strains and organisms causing toxic shock syndrome. Genetic variation in S. aureus is very extensive, with ≈22% of the genome comprised of dispensable genetic material. Eighteen large regions of difference were identified, and 10 of these regions have genes that encode putative virulence factors or proteins mediating antibiotic resistance. We find that lateral gene transfer has played a fundamental role in the evolution of S. aureus. The mec gene has been horizontally transferred into distinct S. aureus chromosomal backgrounds at least five times, demonstrating that methicillin-resistant strains have evolved multiple independent times, rather than from a single ancestral strain. This finding resolves a long-standing controversy in S. aureus research. The epidemic of toxic shock syndrome that occurred in the 1970s was caused by a change in the host environment, rather than rapid geographic dissemination of a new hypervirulent strain. DNA microarray analysis of large samples of clinically characterized strains provides broad insights into evolution, pathogenesis, and disease emergence.