11 resultados para ATROPHY INVOLVE

em National Center for Biotechnology Information - NCBI


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The rapid loss of muscle mass that accompanies many disease states, such as cancer or sepsis, is primarily a result of increased protein breakdown in muscle, and several observations have suggested an activation of the ubiquitin–proteasome system. Accordingly, in extracts of atrophying muscles from tumor-bearing or septic rats, rates of 125I-ubiquitin conjugation to endogenous proteins were found to be higher than in control extracts. On the other hand, in extracts of muscles from hypothyroid rats, where overall proteolysis is reduced below normal, the conjugation of 125I-ubiquitin to soluble proteins decreased by 50%, and treatment with triiodothyronine (T3) restored ubiquitination to control levels. Surprisingly, the N-end rule pathway, which selectively degrades proteins with basic or large hydrophobic N-terminal residues, was found to be responsible for most of these changes in ubiquitin conjugation. Competitive inhibitors of this pathway that specifically block the ubiquitin ligase, E3α, suppressed most of the increased ubiquitin conjugation in the muscle extracts from tumor-bearing and septic rats. These inhibitors also suppressed ubiquitination in normal extracts toward levels in hypothyroid extracts, which showed little E3α-dependent ubiquitination. Thus, the inhibitors eliminated most of the differences in ubiquitination under these different pathological conditions. Moreover, 125I-lysozyme, a model N-end rule substrate, was ubiquitinated more rapidly in extracts from tumor-bearing and septic rats, and more slowly in those from hypothyroid rats, than in controls. Thus, the rate of ubiquitin conjugation increases in atrophying muscles, and these hormone- and cytokine-dependent responses are in large part due to activation of the N-end rule pathway.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Proximal spinal muscular atrophy is an autosomal recessive human disease of spinal motor neurons leading to muscular weakness with onset predominantly in infancy and childhood. With an estimated heterozygote frequency of 1/40 it is the most common monogenic disorder lethal to infants; milder forms represent the second most common pediatric neuromuscular disorder. Two candidate genes—survival motor neuron (SMN) and neuronal apoptosis inhibitory protein have been identified on chromosome 5q13 by positional cloning. However, the functional impact of these genes and the mechanism leading to a degeneration of motor neurons remain to be defined. To analyze the role of the SMN gene product in vivo we generated SMN-deficient mice. In contrast to the human genome, which contains two copies, the mouse genome contains only one SMN gene. Mice with homozygous SMN disruption display massive cell death during early embryonic development, indicating that the SMN gene product is necessary for cellular survival and function.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In mammalian muscle a postnatal switch in functional properties of neuromuscular transmission occurs when miniature end plate currents become shorter and the conductance and Ca2+ permeability of end plate channels increases. These changes are due to replacement during early neonatal development of the γ-subunit of the fetal acetylcholine receptor (AChR) by the ɛ-subunit. The long-term functional consequences of this switch for neuromuscular transmission and motor behavior of the animal remained elusive. We report that deletion of the ɛ-subunit gene caused in homozygous mutant mice the persistence of γ-subunit gene expression in juvenile and adult animals. Neuromuscular transmission in these animals is based on fetal type AChRs present in the end plate at reduced density. Impaired neuromuscular transmission, progressive muscle weakness, and atrophy caused premature death 2 to 3 months after birth. The results demonstrate that postnatal incorporation into the end plate of ɛ-subunit containing AChRs is essential for normal development of skeletal muscle.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tenascin-C is an adhesion-modulating matrix glycoprotein that has multiple effects on cell behavior. Tenascin-C transcripts are expressed in motile cells and at sites of tissue modeling during development, and alternative splicing generates variants that encode different numbers of fibronectin type III repeats. We have examined the in vivo expression and cell adhesive properties of two full-length recombinant tenascin-C proteins: TN-190, which contains the eight constant fibronectin type III repeats, and TN-ADC, which contains the additional AD2, AD1, and C repeats. In situ hybridization with probes specific for the AD2, AD1, and C repeats shows that these splice variants are expressed at sites of active tissue modeling and fibronectin expression in the developing avian feather bud and sternum. Transcripts incorporating the AD2, AD1, and C repeats are present in embryonic day 10 wing bud but not in embryonic day 10 lung. By using a panel of nine cell lines in attachment assays, we have found that C2C12, G8, and S27 myoblastic cells undergo concentration-dependent adhesion to both variants, organize actin microspikes that contain the actin-bundling protein fascin, and do not assemble focal contacts. On a molar basis, TN-ADC is more active than TN-190 in promoting cell attachment and irregular cell spreading. The addition of either TN-190 or TN-ADC in solution to C2C12, COS-7, or MG-63 cells adherent on fibronectin decreases cell attachment and results in decreased organization of actin microfilament bundles, with formation of cortical membrane ruffles and retention of residual points of substratum contact that contain filamentous actin and fascin. These data establish a biochemical similarity in the processes of cell adhesion to tenascin-C and thrombospondin-1, also an “antiadhesive” matrix component, and also demonstrate that both the adhesive and adhesion-modulating properties of tenascin-C involve similar biochemical events in the cortical cytoskeleton. In addition to these generic properties, TN-ADC is less active in adhesion modulation than TN-190. The coordinated expression of different tenascin-C transcripts during development may, therefore, provide appropriate microenvironments for regulated changes in cell shape, adhesion, and movement.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

SMN1 and SMN2 (survival motor neuron) encode identical proteins. A critical question is why only the homozygous loss of SMN1, and not SMN2, results in spinal muscular atrophy (SMA). Analysis of transcripts from SMN1/SMN2 hybrid genes and a new SMN1 mutation showed a direct relationship between presence of disease and exon 7 skipping. We have reported previously that the exon-skipped product SMNΔ7 is partially defective for self-association and SMN self-oligomerization correlated with clinical severity. To evaluate systematically which of the five nucleotides that differ between SMN1 and SMN2 effect alternative splicing of exon 7, a series of SMN minigenes was engineered and transfected into cultured cells, and their transcripts were characterized. Of these nucleotide differences, the exon 7 C-to-T transition at codon 280, a translationally silent variance, was necessary and sufficient to dictate exon 7 alternative splicing. Thus, the failure of SMN2 to fully compensate for SMN1 and protect from SMA is due to a nucleotide exchange (C/T) that attenuates activity of an exonic enhancer. These findings demonstrate the molecular genetic basis for the nature and pathogenesis of SMA and illustrate a novel disease mechanism. Because individuals with SMA retain the SMN2 allele, therapy targeted at preventing exon 7 skipping could modify clinical outcome.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Interveinal strips (10 × 1.5 mm) excised from growing tobacco (Nicotiana tabacum L. cv Xanthi) leaves have an auxin-specific, epinastic growth response that is developmentally regulated and is not the result of ethylene induction (C.P. Keller, E. Van Volkenburgh [1997] Plant Physiol 113: 603–610). We report here that auxin (10 μm naphthalene acetic acid) treatment of strips does not result in plasma membrane hyperpolarization or detectable proton efflux. This result is in contrast to the expected responses elicited by 1 μm fusicoccin (FC) treatment, which in other systems mimics auxin growth promotion through stimulation of the plasma membrane H+-ATPase and resultant acid wall loosening; FC produced both hyperpolarization and proton efflux in leaf strips. FC-induced growth was much more inhibited by a strong neutral buffer than was auxin-induced growth. Measurements of the osmotic concentration of strips suggested that osmotic adjustment plays no role in the auxin-induced growth response. Although cell wall loosening of some form appears to be involved, taken together, our results suggest that auxin-induced growth stimulation of tobacco leaf strips results primarily from a mechanism not involving acid growth.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Alternative reproductive cycles make use of different strategies to generate different reproductive products. In Escherichia coli, recA and several other rec genes are required for the generation of recombinant genomes during Hfr conjugation. During normal asexual reproduction, many of these same genes are needed to generate clonal products from UV-irradiated cells. However, unlike conjugation, this latter process also requires the function of the nucleotide excision repair genes. Following UV irradiation, the recovery of DNA replication requires uvrA and uvrC, as well as recA, recF, and recR. The rec genes appear to be required to protect and maintain replication forks that are arrested at DNA lesions, based on the extensive degradation of the nascent DNA that occurs in their absence. The products of the recJ and recQ genes process the blocked replication forks before the resumption of replication and may affect the fidelity of the recovery process. We discuss a model in which several rec gene products process replication forks arrested by DNA damage to facilitate the repair of the blocking DNA lesions by nucleotide excision repair, thereby allowing processive replication to resume with no need for strand exchanges or recombination. The poor survival of cellular populations that depend on recombinational pathways (compared with that in their excision repair proficient counterparts) suggests that at least some of the rec genes may be designed to function together with nucleotide excision repair in a common and predominant pathway by which cells faithfully recover replication and survive following UV-induced DNA damage.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hippocampal volumes of subjects with a history of major depressive episodes but currently in remission and with no known medical comorbidity were compared to matched normal controls by using volumetric magnetic resonance images. Subjects with a history of major depression had significantly smaller left and right hippocampal volumes with no differences in total cerebral volumes. The degree of hippocampal volume reduction correlated with total duration of major depression. In addition, large (diameter > or = 4.5 mm)-hippocampal low signal foci (LSF) were found within the hippocampus, and their number also correlated with the total number of days depressed. These results suggest that depression is associated with hippocampal atrophy, perhaps due to a progressive process mediated by glucocorticoid neurotoxicity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Most cases of congenital adrenal hyperplasia, the inherited inability to synthesize cortisol, are caused by mutations in the steroid 21-hydroxylase gene (CYP21). Steroid 21-hydroxylase deficiency is unusual among genetic diseases in that approximately 95% of the mutant alleles have apparently been generated by recombination between a normally active gene (CYP21) and a linked pseudogene (CYP21P). Approximately 20% of mutant alleles carry DNA deletions of 30 kb that have presumably been generated by unequal meiotic crossing-over, whereas 75% carry one or more mutations in CYP21 that are normally found in the CYP21P pseudogene. These latter mutations are termed "gene conversions," although the mechanism by which they are generated is not well understood. To assess the frequency at which these different recombination events occur, we have used PCR to detect de novo deletions and gene conversions in matched sperm and peripheral blood leukocyte DNA samples from normal individuals. Deletions with breakpoints in a 100-bp region in intron 2 and exon 3 were detected in sperm DNA samples with frequencies of approximately 1 in 10(5)-10(6) genomes but were never detected in the matching leukocyte DNA. Gene conversions in the same region occur in approximately 1 in 10(3)-10(5) genomes in both sperm and leukocyte DNA. These data suggest that whereas deletions occur exclusively in meiosis, gene conversions occur during both meiosis and mitosis, or perhaps only during mitosis. Thus, gene conversions must occur by a mechanism distinct from unequal crossing-over.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The GroE proteins are molecular chaperones involved in protein folding. The general mechanism by which they facilitate folding is still enigmatic. One of the central open questions is the conformation of the GroEL-bound nonnative protein. Several suggestions have been made concerning the folding stage at which a protein can interact with GroEL. Furthermore, the possibility exists that binding of the nonnative protein to GroEL results in its unfolding. We have addressed these issues that are basic for understanding the GroE-mediated folding cycle by using folding intermediates of an Fab antibody fragment as molecular probes to define the binding properties of GroEL. We show that, in addition to binding to an early folding intermediate, GroEL is able to recognize and interact with a late quaternary-structured folding intermediate (Dc) without measurably unfolding it. Thus, the prerequisite for binding is not a certain folding stage of a nonnative protein. In contrast, general surface properties of nonnative proteins seem to be crucial for binding. Furthermore, unfolding of a highly structured intermediate does not necessarily occur upon binding to GroEL. Folding of Dc in the presence of GroEL and ATP involves cycles of binding and release. Because in this system no off-pathway reactions or kinetic traps are involved, a quantitative analysis of the reactivation kinetics observed is possible. Our results indicate that the association reaction of Dc and GroEL in the presence of ATP is rather slow, whereas in the absence of ATP association is several orders of magnitude more efficient. Therefore, it seems that ATP functions by inhibiting reassociation rather than promoting release of the bound substrate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Low-copy repeats have been associated with genomic rearrangements and have been implicated in the generation of mutations in several diseases. Here we characterize a subset of low-copy repeats in the spinal muscular atrophy (SMA) region in human chromosome 5q13. We show that this repeated sequence, named c41-cad, is a highly expressed pseudogene derived from an intact neuronal cadherin gene, Br-cadherin, situated on 5p13-14. Br-cadherin is expressed specifically in the brain, whereas the c41-cad transcripts are 10-15 times more abundant and are present in all tissues examined. We speculate that the c41-cad repeats, separately or in concert with other repeats in the SMA region, are involved in the pathogenesis of SMA by promoting rearrangements and deletions.