4 resultados para ASTRO-R8
em National Center for Biotechnology Information - NCBI
Resumo:
A novel method of P-element mutagenesis is described for the isolation of mutants affecting the development of the Drosophila compound eye. It exploits the interaction between the Bride of Sevenless (Boss) ligand and the Sevenless (Sev) receptor tyrosine kinase that triggers the formation of the UV-sensitive photoreceptor neuron, R7. Transposition of a boss cDNA transgene, in an otherwise boss mutant background, was used as a “phenotypic trap” in live flies to identify enhancers expressed during a narrow time window in eye development. Using a rapid behavioral screen, more than 400,000 flies were tested for restoration of R7. Some 1,800 R7-containing flies were identified. Among these, 21 independent insertions with expression of the boss reporter gene in the R8 cell were identified by a external eye morphology and staining with an antibody against Boss. Among 900 lines with expression of the boss reporter gene in multiple cells assessed for homozygous mutant phenotypes, insertions in the marbles, glass, gap1, and fasciclin II genes were isolated. This phenotypic enhancer-trap facilitates (i) the isolation of enhancer-traps with a specific expression pattern, and (ii) the recovery of mutants disrupting development of specific tissues. Because the temporal and tissue specificity of the phenotypic trap is dependent on the choice of the marker used, this approach can be extended to other tissues and developmental stages.
Resumo:
Mutations in the hook gene alter intracellular trafficking of internalized ligands in Drosophila. To dissect this defect in more detail, we developed a new approach to visualize the pathway taken by the Bride of Sevenless (Boss) ligand after its internalization into R7 cells. A chimeric protein consisting of HRP fused to Boss (HRP-Boss) was expressed in R8 cells. This chimera was fully functional: it rescued the boss mutant phenotype, and its trafficking was indistinguishable from that of the wild-type Boss protein. The HRP activity of the chimera was used to follow HRP-Boss trafficking on the ultrastructural level through early and late endosomes in R7 cells. In both wild-type and hook mutant eye disks, HRP-Boss was internalized into R7 cells. In wild-type tissue, Boss accumulated in mature multivesicular bodies (MVBs) within R7 cells; such accumulation was not observed in hook eye disks, however. Quantitative electron microscopy revealed a loss of mature MVBs in hook mutant tissue compared with wild type, whereas more than twice as many multilammelar late endosomes were detected. Our genetic analysis indicates that Hook is required late in endocytic trafficking to negatively regulate delivery from mature MVBs to multilammelar late endosomes and lysosomes.
Resumo:
Phosphorylation of the regulatory (R) domain initiates cystic fibrosis transmembrane conductance regulator (CFTR) Cl− channel activity. To discover how the function of this domain is determined by its structure, we produced an R domain protein (R8) that spanned residues 708–831 of CFTR. Phosphorylated, but not unphosphorylated, R8 stimulated activity of CFTR channels lacking this domain, indicating that R8 is functional. Unexpectedly, this functional R8 was predominantly random coil, as revealed by CD and limited proteolysis. The CD spectra of both phosphorylated and nonphosphorylated R8 were similar in aqueous buffer. The folding agent trimethylamine N-oxide induced only a small increase in the helical content of nonphosphorylated R8 and even less change in the helical content of phosphorylated R8. These data, indicating that the R domain is predominantly random coil, may explain the seemingly complex way in which phosphorylation regulates CFTR channel activity.
Resumo:
neuralized (neur) is a neurogenic mutant of Drosophila in which many signaling events mediated by the Notch (N) receptor are disrupted. Here, we analyze the role of neur during eye development. Neur is required in a cell-autonomous fashion to restrict R8 and other photoreceptor fates and is involved in lateral inhibition of interommatidial bristles but is not required for induction of the cone cell fate. The latter contrasts with the absolute requirement for Suppressor of Hairless and the Enhancer of split-Complex for cone cell induction. Using gain-of-function experiments, we further demonstrate that ectopic wild-type and truncated Neur proteins can interfere with multiple N-controlled aspects of eye development, including both neur-dependent and neur-independent processes.