7 resultados para APC GENE

em National Center for Biotechnology Information - NCBI


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mutations in the APC (adenomatous polyposis coli) gene appear to be responsible for not only familial adenomatous polyposis but also many sporadic cases of gastrointestinal cancers. Using homologous recombination in mouse embryonic stem cells, we constructed mice that contained a mutant gene encoding a product truncated at a 716 (Apc delta 716). Mendelian transmission of the gene caused most homozygous mice to die in utero before day 8 of gestation. The heterozygotes developed multiple polyps throughout the intestinal tract, mostly in the small intestine. The earliest polyps arose multifocally during the third week after birth, and new polyps continued to appear thereafter. Surprisingly, every nascent polyp consisted of a microadenoma covered with a layer of the normal villous epithelium. These microadenomas originated from single crypts by forming abnormal outpockets into the inner (lacteal) side of the neighboring villi. We carefully dissected such microadenomas from nascent polyps by peeling off the normal epithelium and determined their genotype by PCR: all microadenomas had already lost the wild-type Apc allele, whereas the mutant allele remained unchanged. These results indicate that loss of heterozygosity followed by formation of intravillous microadenomas is responsible for polyposis in Apc delta 716 intestinal mucosa. It is therefore unlikely that the truncated product interacts directly with the wild-type protein and causes the microadenomas by a dominant negative mechanism.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Classical familial adenomatous polyposis (FAP) is a high-penetrance autosomal dominant disease that predisposes to hundreds or thousands of colorectal adenomas and carcinoma and that results from truncating mutations in the APC gene. A variant of FAP is attenuated adenomatous polyposis coli, which results from germ-line mutations in the 5′ and 3′ regions of the APC gene. Attenuated adenomatous polyposis coli patients have “multiple” colorectal adenomas (typically fewer than 100) without the florid phenotype of classical FAP. Another group of patients with multiple adenomas has no mutations in the APC gene, and their phenotype probably results from variation at a locus, or loci, elsewhere in the genome. Recently, however, a missense variant of APC (I1307K) was described that confers an increased risk of colorectal tumors, including multiple adenomas, in Ashkenazim. We have studied a set of 164 patients with multiple colorectal adenomas and/or carcinoma and analyzed codons 1263–1377 (exon 15G) of the APC gene for germ-line variants. Three patients with the I1307K allele were detected, each of Ashkenazi descent. Four patients had a germ-line E1317Q missense variant of APC that was not present in controls; one of these individuals had an unusually large number of metaplastic polyps of the colorectum. There is increasing evidence that there exist germ-line variants of the APC gene that predispose to the development of multiple colorectal adenomas and carcinoma, but without the florid phenotype of classical FAP, and possibly with importance for colorectal cancer risk in the general population.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Familial adenomatous polyposis (FAP) is an autosomal-dominant disease characterized by the development of hundreds of adenomatous polyps of the colorectum. Approximately 80% of FAP patients can be shown to have truncating mutations of the APC gene. To determine the cause of FAP in the other 20% of patients, MAMA (monoallelic mutation analysis) was used to independently examine the status of each of the two APC alleles. Seven of nine patients analyzed were found to have significantly reduced expression from one of their two alleles whereas two patients were found to have full-length expression from both alleles. We conclude that more than 95% of patients with FAP have inactivating mutations in APC and that a combination of MAMA and standard genetic tests will identify APC abnormalities in the vast majority of such patients. That no APC expression from the mutant allele is found in some FAP patients argues strongly against the requirement for dominant negative effects of APC mutations. The results also suggest that there may be at least one additional gene, besides APC, that can give rise to FAP.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Mutations of the human adenomatosis polyposis coli (APC) gene are associated with the development of familial as well as sporadic intestinal neoplasia. To examine the in vivo function of APC, 129/Sv embryonic stem (ES) cells were transfected with DNA encoding the wild-type human protein under the control of a promoter that is active in all four of the small intestine's principal epithelial lineages during their migration-associated differentiation. ES-APC cells were then introduced into C57BL/6-ROSA26 blastocysts. Analyses of adult B6-ROSA26<-->129/Sv-APC chimeric mice revealed that forced expression of APC results in markedly disordered cell migration. When compared with the effects of forced expression of E-cadherin, the data suggest that APC-catenin and E-cadherin-catenin complexes have opposing effects on intestinal epithelial cell movement/adhesiveness; augmentation of E-cadherin-beta-catenin complexes produces a highly ordered, "adhesive" migration, whereas augmentation of APC-beta-catenin complexes produces a disordered, nonadhesive migratory phenotype. We propose that APC mutations may promote tumorigenesis by increasing the relative activity of cadherin-catenin complexes, resulting in enhanced adhesiveness and functional anchorage of initiated cells within the intestinal crypt. Our studies also indicate that chimeric mice generated from B6-ROSA26 blastocysts and genetically manipulated ES cells should be useful for auditing gene function in the gastrointestinal tract and in other tissues.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fanconi anemia (FA) is a genetically heterogeneous autosomal recessive syndrome associated with chromosomal instability, hypersensitivity to DNA crosslinking agents, and predisposition to malignancy. The gene for FA complementation group A (FAA) recently has been cloned. The cDNA is predicted to encode a polypeptide of 1,455 amino acids, with no homologies to any known protein that might suggest a function for FAA. We have used single-strand conformational polymorphism analysis to screen genomic DNA from a panel of 97 racially and ethnically diverse FA patients from the International Fanconi Anemia Registry for mutations in the FAA gene. A total of 85 variant bands were detected. Forty-five of the variants are probably benign polymorphisms, of which nine are common and can be used for various applications, including mapping studies for other genes in this region of chromosome 16q. Amplification refractory mutation system assays were developed to simplify their detection. Forty variants are likely to be pathogenic mutations. Seventeen of these are microdeletions/microinsertions associated with short direct repeats or homonucleotide tracts, a type of mutation thought to be generated by a mechanism of slipped-strand mispairing during DNA replication. A screening of 350 FA probands from the International Fanconi Anemia Registry for two of these deletions (1115–1118del and 3788–3790del) revealed that they are carried on about 2% and 5% of the FA alleles, respectively. 3788–3790del appears in a variety of ethnic groups and is found on at least two different haplotypes. We suggest that FAA is hypermutable, and that slipped-strand mispairing, a mutational mechanism recognized as important for the generation of germ-line and somatic mutations in a variety of cancer-related genes, including p53, APC, RB1, WT1, and BRCA1, may be a major mechanism for FAA mutagenesis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have investigated the influence of genetic instability [replication error (RER) phenotype] on APC (adenomatous polyposis coli), a gene thought to initiate colorectal tumorigenesis. The prevalence of APC mutations was similar in RER and non-RER tumors, indicating that both tumor types share this step in neoplastic transformation. However, in a total of 101 sequenced mutations, we noted a substantial excess of APC frameshift mutations in the RER cases (70% in RER tumors versus 47% in non-RER tumors, P < 0.04). These frameshifts were characteristic of mutations arising in cells deficient in DNA mismatch repair, with a predilection for mononucleotide repeats in the RER tumors (P < 0.0002), particularly (A)n tracts (P < 0.00007). These findings suggest that the genetic instability that is reflected by the RER phenotype precedes, and is responsible for, APC mutation in RER large bowel tumors and have important implications for understanding the very earliest stages of neoplasia in patients with tumors deficient in mismatch repair.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tumors result from disruptions in the homeostatic mechanisms that regulate cell birth and cell death. In colon cancer, one of the earliest manifestation of this imbalance is the formation of polyps, caused by somatic and inherited mutations of the adenomatous polyposis coli (APC) tumor suppressor gene in both humans and mice. While the importance of APC in tumorigenesis is well documented, how it functions to prevent tumors remains a mystery. Using a novel inducible expression system, we show that expression of APC in human colorectal cancer cells containing endogenous inactive APC alleles results in a substantial diminution of cell growth. Further evaluation demonstrated that this was due to the induction of cell death through apoptosis. These results suggest that apoptosis plays a role not only in advanced tumors but also at the very earliest stages of neoplasia.