53 resultados para ANTIOXIDATIVE DEFENSE
em National Center for Biotechnology Information - NCBI
Resumo:
We analyzed antioxidative defenses, photosynthesis, and pigments (especially xanthophyll-cycle components) in two wheat (Triticum durum Desf.) cultivars, Adamello and Ofanto, during dehydration and rehydration to determine the difference in their sensitivities to drought and to elucidate the role of different protective mechanisms against oxidative stress. Drought caused a more pronounced inhibition in growth and photosynthetic rates in the more sensitive cv Adamello compared with the relatively tolerant cv Ofanto. During dehydration the glutathione content decreased in both wheat cultivars, but only cv Adamello showed a significant increase in glutathione reductase and hydrogen peroxide-glutathione peroxidase activities. The activation states of two sulfhydryl-containing chloroplast enzymes, NADP+-dependent glyceraldehyde-3-phosphate dehydrogenase and fructose-1,6-bisphosphatase, were maintained at control levels during dehydration and rehydration in both cultivars. This indicates that the defense systems involved are efficient in the protection of sulfhydryl groups against oxidation. Drought did not cause significant effects on lipid peroxidation. Upon dehydration, a decline in chlorophyll a, lutein, neoxanthin, and β-carotene contents, and an increase in the pool of de-epoxidized xanthophyll-cycle components (i.e. zeaxanthin and antheraxanthin), were evident only in cv Adamello. Accordingly, after exposure to drought, cv Adamello showed a larger reduction in the actual photosystem II photochemical efficiency and a higher increase in nonradiative energy dissipation than cv Ofanto. Although differences in zeaxanthin content were not sufficient to explain the difference in drought tolerance between the two cultivars, zeaxanthin formation may be relevant in avoiding irreversible damage to photosystem II in the more sensitive cultivar.
Resumo:
The response of the ascorbate-glutathione cycle was investigated in roots of young wheat (Triticum aestivum L.) seedlings that were deprived of oxygen either by subjecting them to root hypoxia or to entire plant anoxia and then re-aerated. Although higher total levels of ascorbate and glutathione were observed under hypoxia, only the total amount of ascorbate was increased under anoxia. Under both treatments a significant increase in the reduced form of ascorbate and glutathione was found, resulting in increased reduction states. Upon the onset of re-aeration the ratios started to decline rapidly, indicating oxidative stress. Hypoxia caused higher activity of ascorbate peroxidase, whereas activities of monodehydroascorbate reductase, dehydroascorbate reductase, and glutathione reductase were diminished or only slightly influenced. Under anoxia, activities of ascorbate peroxidase and glutathione reductase decreased significantly to 39 and 62%, respectively. However, after re-aeration of hypoxically or anoxically pretreated roots, activity of enzymes approached the control levels. This corresponds with the restoration of the high reduction state of ascorbate and glutathione within 16 to 96 h of re-aeration, depending on the previous duration of anoxia. Apparently, anoxia followed by re-aeration more severely impairs entire plant metabolism compared with hypoxia, thus leading to decreased viability.
Resumo:
We analyzed the antioxidative defense responses of transgenic tobacco (Nicotiana tabacum) plants expressing antisense RNA for uroporphyrinogen decarboxylase or coproporphyrinogen oxidase. These plants are characterized by necrotic leaf lesions resulting from the accumulation of potentially photosensitizing tetrapyrroles. Compared with control plants, the transformants had increased levels of antioxidant mRNAs, particularly those encoding superoxide dismutase (SOD), catalase, and glutathione peroxidase. These elevated transcript levels correlated with increased activities of cytosolic Cu/Zn-SOD and mitochondrial Mn-SOD. Total catalase activity decreased in the older leaves of the transformants to levels lower than in the wild-type plants, reflecting an enhanced turnover of this photosensitive enzyme. Most of the enzymes of the Halliwell-Asada pathway displayed increased activities in transgenic plants. Despite the elevated enzyme activities, the limited capacity of the antioxidative system was apparent from decreased levels of ascorbate and glutathione, as well as from necrotic leaf lesions and growth retardation. Our data demonstrate the induction of the enzymatic detoxifying defense system in several compartments, suggesting a photosensitization of the entire cell. It is proposed that the tetrapyrroles that initially accumulate in the plastids leak out into other cellular compartments, thereby necessitating the local detoxification of reactive oxygen species.
Resumo:
The plant Mentzelia pumila (family Loasaceae) has leaves and stems densely covered with tiny hooked trichomes. The structures entrap and kill insects and therefore are most probably protective. But they are also maladaptive in that they incapacitate a coccinellid beetle (Hippodamia convergens) that preys upon an aphid enemy (Macrosiphum mentzeliae) of the plant. The adaptive benefit provided by the trichomes is evidently offset by a cost.
Resumo:
To investigate the role of jasmonate in the defense of plants against fungal pathogens, we have studied a mutant of Arabidopsis, fad3–2 fad7–2 fad8, that cannot accumulate jasmonate. Mutant plants were extremely susceptible to root rot caused by the fungal root pathogen Pythium mastophorum (Drechs.), even though neighboring wild-type plants were largely unaffected by this fungus. Application of exogenous methyl jasmonate substantially protected mutant plants, reducing the incidence of disease to a level close to that of wild-type controls. A similar treatment with methyl jasmonate did not protect the jasmonate-insensitive mutant coi1 from infection, showing that protective action of applied jasmonate against P. mastophorum was mediated by the induction of plant defense mechanisms rather than by a direct antifungal action. Transcripts of three jasmonate-responsive defense genes are induced by Pythium challenge in the wild-type but not in the jasmonate-deficient mutant. Pythium species are ubiquitous in soil and root habitats world-wide, but most (including P. mastophorum) are considered to be minor pathogens. Our results indicate that jasmonate is essential for plant defense against Pythium and, because of the high exposure of plant roots to Pythium inoculum in soil, may well be fundamental to survival of plants in nature. Our results further indicate that the fad3–2 fad7–2 fad8 mutant is an appropriate genetic model for studying the role of this important signaling molecule in pathogen defense.
Resumo:
The rice blast fungus, Magnaporthe grisea, generates enormous turgor pressure within a specialized cell called the appressorium to breach the surface of host plant cells. Here, we show that a mitogen-activated protein kinase, Mps1, is essential for appressorium penetration. Mps1 is 85% similar to yeast Slt2 mitogen-activated protein kinase and can rescue the thermosensitive growth of slt2 null mutants. The mps1–1Δ mutants of M. grisea have some phenotypes in common with slt2 mutants of yeast, including sensitivity to cell-wall-digesting enzymes, but display additional phenotypes, including reduced sporulation and fertility. Interestingly, mps1–1Δ mutants are completely nonpathogenic because of the inability of appressoria to penetrate plant cell surfaces, suggesting that penetration requires remodeling of the appressorium wall through an Mps1-dependent signaling pathway. Although mps1–1Δ mutants are unable to cause disease, they are able to trigger early plant-cell defense responses, including the accumulation of autofluorescent compounds and the rearrangement of the actin cytoskeleton. We conclude that MPS1 is essential for pathogen penetration; however, penetration is not required for induction of some plant defense responses.
Resumo:
Stressed mammalian cells up-regulate heme oxygenase 1 (Hmox1; EC 1.14.99.3), which catabolizes heme to biliverdin, carbon monoxide, and free iron. To assess the potential role of Hmox1 in cellular antioxidant defense, we analyzed the responses of cells from mice lacking functional Hmox1 to oxidative challenges. Cultured Hmox1−/− embryonic fibroblasts demonstrated high oxygen free radical production when exposed to hemin, hydrogen peroxide, paraquat, or cadmium chloride, and they were hypersensitive to cytotoxicity caused by hemin and hydrogen peroxide. Furthermore, young adult Hmox1−/− mice were vulnerable to mortality and hepatic necrosis when challenged with endotoxin. Our in vitro and in vivo results provide genetic evidence that up-regulation of Hmox1 serves as an adaptive mechanism to protect cells from oxidative damage during stress.
Resumo:
Reactive oxygen intermediates (ROI) play a critical role in the defense of plants against invading pathogens. Produced during the “oxidative burst,” they are thought to activate programmed cell death (PCD) and induce antimicrobial defenses such as pathogenesis-related proteins. It was shown recently that during the interaction of plants with pathogens, the expression of ROI-detoxifying enzymes such as ascorbate peroxidase (APX) and catalase (CAT) is suppressed. It was suggested that this suppression, occurring upon pathogen recognition and coinciding with an enhanced rate of ROI production, plays a key role in elevating cellular ROI levels, thereby potentiating the induction of PCD and other defenses. To examine the relationship between the suppression of antioxidative mechanisms and the induction of PCD and other defenses during pathogen attack, we studied the interaction between transgenic antisense tobacco plants with reduced APX or CAT and a bacterial pathogen that triggers the hypersensitive response. Transgenic plants with reduced capability to detoxify ROI (i.e., antisense APX or CAT) were found to be hyperresponsive to pathogen attack. They activated PCD in response to low amounts of pathogens that did not trigger the activation of PCD in control plants. Our findings support the hypothesis that suppression of ROI-scavenging enzymes during the hypersensitive response plays an important role in enhancing pathogen-induced PCD.
Resumo:
We have analyzed the Drosophila immune response in domino mutant larvae, which are devoid of blood cells. The domino mutants have a good larval viability, but they die as prepupae. We show that, on immune challenge, induction of the genes encoding antimicrobial peptides in the fat body is not affected significantly in the mutant larvae, indicating that hemocytes are not essential in this process. The hemocoele of domino larvae contains numerous live microorganisms, the presence of which induces a weak antimicrobial response in the fat body. A full response is observed only after septic injury. We propose that the fat body cells are activated both by the presence of microorganisms and by injury and that injury potentiates the effect of microorganisms. Survival experiments after an immune challenge showed that domino mutants devoid of blood cells maintain a wild-type resistance to septic injury. This resistance was also observed in mutant larvae in which the synthesis of antibacterial peptides is impaired (immune deficiency larvae) and in mutants that are deficient for humoral melanization (Black cells larvae). However, if domino was combined with either the immune deficiency or the Black cell mutation, the resistance to septic injury was reduced severely. These results establish the relevance of the three immune reactions: phagocytosis, synthesis of antibacterial peptides, and melanization. By working in synergy, they provide Drosophila a highly effective defense against injury and/or infection.
Resumo:
The endogenous plant hormones salicylic acid (SA) and jasmonic acid (JA), whose levels increase on pathogen infection, activate separate sets of genes encoding antimicrobial proteins in Arabidopsis thaliana. The pathogen-inducible genes PR-1, PR-2, and PR-5 require SA signaling for activation, whereas the plant defensin gene PDF1.2, along with a PR-3 and PR-4 gene, are induced by pathogens via an SA-independent and JA-dependent pathway. An Arabidopsis mutant, coi1, that is affected in the JA-response pathway shows enhanced susceptibility to infection by the fungal pathogens Alternaria brassicicola and Botrytis cinerea but not to Peronospora parasitica, and vice versa for two Arabidopsis genotypes (npr1 and NahG) with a defect in their SA response. Resistance to P. parasitica was boosted by external application of the SA-mimicking compound 2,6-dichloroisonicotinic acid [Delaney, T., et al. (1994) Science 266, 1247–1250] but not by methyl jasmonate (MeJA), whereas treatment with MeJA but not 2,6-dichloroisonicotinic acid elevated resistance to Alternaria brassicicola. The protective effect of MeJA against A. brassicicola was the result of an endogenous defense response activated in planta and not a direct effect of MeJA on the pathogen, as no protection to A. brassicicola was observed in the coi1 mutant treated with MeJA. These data point to the existence of at least two separate hormone-dependent defense pathways in Arabidopsis that contribute to resistance against distinct microbial pathogens.
Resumo:
Reactive oxygen species (ROS) are both signal molecules and direct participants in plant defense against pathogens. Many fungi synthesize mannitol, a potent quencher of ROS, and there is growing evidence that at least some phytopathogenic fungi use mannitol to suppress ROS-mediated plant defenses. Here we show induction of mannitol production and secretion in the phytopathogenic fungus Alternaria alternata in the presence of host-plant extracts. Conversely, we show that the catabolic enzyme mannitol dehydrogenase is induced in a non-mannitol-producing plant in response to both fungal infection and specific inducers of plant defense responses. This provides a mechanism whereby the plant can counteract fungal suppression of ROS-mediated defenses by catabolizing mannitol of fungal origin.
Resumo:
The signaling pathways that allow plants to mount defenses against chewing insects are known to be complex. To investigate the role of jasmonate in wound signaling in Arabidopsis and to test whether parallel or redundant pathways exist for insect defense, we have studied a mutant (fad3–2 fad7–2 fad8) that is deficient in the jasmonate precursor linolenic acid. Mutant plants contained negligible levels of jasmonate and showed extremely high mortality (≈80%) from attack by larvae of a common saprophagous fungal gnat, Bradysia impatiens (Diptera: Sciaridae), even though neighboring wild-type plants were largely unaffected. Application of exogenous methyl jasmonate substantially protected the mutant plants and reduced mortality to ≈12%. These experiments precisely define the role of jasmonate as being essential for the induction of biologically effective defense in this plant–insect interaction. The transcripts of three wound-responsive genes were shown not to be induced by wounding of mutant plants but the same transcripts could be induced by application of methyl jasmonate. By contrast, measurements of transcript levels for a gene encoding glutathione S-transferase demonstrated that wound induction of this gene is independent of jasmonate synthesis. These results indicate that the mutant will be a good genetic model for testing the practical effectiveness of candidate defense genes.
Resumo:
Insects respond to microbial infection by the rapid and transient expression of several genes encoding potent antimicrobial peptides. Herein we demonstrate that this antimicrobial response of Drosophila is not aspecific but can discriminate between various classes of microorganisms. We first observe that the genes encoding antibacterial and antifungal peptides are differentially expressed after injection of distinct microorganisms. More strikingly, Drosophila that are naturally infected by entomopathogenic fungi exhibit an adapted response by producing only peptides with antifungal activities. This response is mediated through the selective activation of the Toll pathway.
Resumo:
The larva of the green lacewing (Ceraeochrysa cubana) (Neuroptera, Chrysopidae) is a natural predator of eggs of Utetheisa ornatrix (Lepidoptera, Arctiidae), a moth that sequesters pyrrolizidine alkaloids from its larval foodplant (Fabaceae, Crotalaria spp.). Utetheisa eggs are ordinarily endowed with the alkaloid. Alkaloid-free Utetheisa eggs, produced experimentally, are pierced by the larva with its sharp tubular jaws and sucked out. Alkaloid-laden eggs, in contrast, are rejected. When attacking an Utetheisa egg cluster (numbering on average 20 eggs), the larva subjects it to an inspection process. It prods and/or pierces a small number of eggs (on average two to three) and, if these contain alkaloid, it passes “negative judgement” on the remainder of the cluster and turns away. Such generalization on the part of the larva makes sense, because the eggs within clusters differ little in alkaloid content. There is, however, considerable between-cluster variation in egg alkaloid content, so clusters in nature can be expected to range widely in palatability. To check each cluster for acceptability must therefore be adaptive for the larva, just as it must be adaptive for Utetheisa to lay its eggs in large clusters and to apportion alkaloid evenly among eggs of a cluster.
Resumo:
The plant-signaling molecules salicylic acid (SA) and jasmonic acid (JA) play an important role in induced disease resistance pathways. Cross-talk between SA- and JA-dependent pathways can result in inhibition of JA-mediated defense responses. We investigated possible antagonistic interactions between the SA-dependent systemic acquired resistance (SAR) pathway, which is induced upon pathogen infection, and the JA-dependent induced systemic resistance (ISR) pathway, which is triggered by nonpathogenic Pseudomonas rhizobacteria. In Arabidopsis thaliana, SAR and ISR are effective against a broad spectrum of pathogens, including the foliar pathogen Pseudomonas syringae pv. tomato (Pst). Simultaneous activation of SAR and ISR resulted in an additive effect on the level of induced protection against Pst. In Arabidopsis genotypes that are blocked in either SAR or ISR, this additive effect was not evident. Moreover, induction of ISR did not affect the expression of the SAR marker gene PR-1 in plants expressing SAR. Together, these observations demonstrate that the SAR and the ISR pathway are compatible and that there is no significant cross-talk between these pathways. SAR and ISR both require the key regulatory protein NPR1. Plants expressing both types of induced resistance did not show elevated Npr1 transcript levels, indicating that the constitutive level of NPR1 is sufficient to facilitate simultaneous expression of SAR and ISR. These results suggest that the enhanced level of protection is established through parallel activation of complementary, NPR1-dependent defense responses that are both active against Pst. Therefore, combining SAR and ISR provides an attractive tool for the improvement of disease control.