78 resultados para ANTIBODY

em National Center for Biotechnology Information - NCBI


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Angiogenin (Ang), an inducer of neovascularization, is secreted by several types of human tumor cells and appears critical for their growth. The murine anti-Ang monoclonal antibody (mAb) 26–2F neutralizes the activities of Ang and dramatically prevents the establishment and metastatic dissemination of human tumor cell xenografts in athymic mice. However, for use clinically, the well-documented problem of the human anti-globulin antibody response known to occur with murine antibodies requires resolution. As a result, chimeric as well as totally humanized antibodies are currently being evaluated as therapeutic agents for the treatment of several pathological conditions, including malignancy. Therefore, we have constructed a chimeric mouse/human antibody based on the structure of mAb 26–2F. Complementary DNAs from the light and heavy chain variable regions of mAb 26–2F were cloned, sequenced, and genetically engineered by PCR for subcloning into expression vectors that contain human constant region sequences. Transfection of these vectors into nonproducing mouse myeloma cells resulted in the secretion of fully assembled tetrameric molecules. The chimeric antibody (cAb 26–2F) binds to Ang and inhibits its ribonucleolytic and angiogenic activities as potently as mAb 26–2F. Furthermore, the capacities of cAb 26–2F and its murine counterpart to suppress the formation of human breast cancer tumors in athymic mice are indistinguishable. Thus cAb 26–2F, with its retained neutralization capability and likely decreased immunogenicity, may be of use clinically for the treatment of human cancer and related disorders where pathological angiogenesis is a component.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An antibody generated to an α-keto amide containing hapten 1 catalyzes the cis-trans isomerization of peptidyl-prolyl amide bonds in peptides and in the protein RNase T1. The antibody-catalyzed peptide isomerization reaction showed saturation kinetics for the cis-substrate, Suc-Ala-Ala-Pro-Phe-pNA, with a kcat/Km value of 883 s−1⋅M−1; the reaction was inhibited by the hapten analog 13 (Ki = 3.0 ± 0.4 μM). Refolding of denatured RNase T1 to its native conformation also was catalyzed by the antibody, with the antibody-catalyzed folding reaction inhibitable both by the hapten 1 and hapten analog 13. These results demonstrate that antibodies can catalyze conformational changes in protein structure, a transformation involved in many cellular processes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Antibody single-chain Fv fragment (scFv) molecules that are specific for fluorescein have been engineered with a C-terminal cysteine for a directed immobilization on a flat gold surface. Individual scFv molecules can be identified by atomic force microscopy. For selected molecules the antigen binding forces are then determined by using a tip modified with covalently immobilized antigen. An scFv mutant of 12% lower free energy for ligand binding exhibits a statistically significant 20% lower binding force. This strategy of covalent immobilization and measuring well separated single molecules allows the characterization of ligand binding forces in molecular repertoires at the single molecule level and will provide a deeper insight into biorecognition processes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cancer/testis (CT) antigens—immunogenic protein antigens that are expressed in testis and a proportion of diverse human cancer types—are promising targets for cancer vaccines. To identify new CT antigens, we constructed an expression cDNA library from a melanoma cell line that expresses a wide range of CT antigens and screened the library with an allogeneic melanoma patient serum known to contain antibodies against two CT antigens, MAGE-1 and NY-ESO-1. cDNA clones isolated from this library identified four CT antigen genes: MAGE-4a, NY-ESO-1, LAGE-1, and CT7. Of these four, only MAGE-4a and NY-ESO-1 proteins had been shown to be immunogenic. LAGE-1 is a member of the NY-ESO-1 gene family, and CT7 is a newly defined gene with partial sequence homology to the MAGE family at its carboxyl terminus. The predicted CT7 protein, however, contains a distinct repetitive sequence at the 5′ end and is much larger than MAGE proteins. Our findings document the immunogenicity of LAGE-1 and CT7 and emphasize the power of serological analysis of cDNA expression libraries in identifying new human tumor antigens.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many insects feed on blood or tissue from mammalian hosts. One potential strategy for the control of these insects is to vaccinate the host with antigens derived from the insect. The larvae of the fly Lucilia cuprina feed on ovine tissue and tissue fluids causing a cutaneous myiasis associated with considerable host morbidity and mortality. A candidate vaccine antigen, peritrophin 95, was purified from the peritrophic membrane, which lines the gut of these larvae. Serum from sheep vaccinated with peritrophin 95 inhibited growth of first-instar L. cuprina larvae that fed on this serum. Growth inhibition was probably caused by antibody-mediated blockage of the normally semipermeable peritrophic membrane and the subsequent development of an impervious layer of undefined composition on the gut lumen side of the peritrophic membrane that restricted access of nutrients to the larvae. The amino acid sequence of peritrophin 95 was determined by cloning the DNA complementary to its mRNA. The deduced amino acid sequence codes for a secreted protein containing a distinct Cys-rich domain of 317 amino acids followed by a mucin-like domain of 139 amino acids. The Cys-rich domain may be involved in binding chitin. This report describes a novel immunological strategy for the potential control of L. cuprina larvae that may have general application to the control of other insect pests.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Although coronary artery disease (CAD) is appreciated to be accelerated in patients with chronic spinal cord injury (SCI), the underlying mechanism of CAD in SCI remains obscure. We have recently shown that platelets from subjects with SCI develop resistance to the inhibitory effect of prostacyclin (PGI2) on the platelet stimulation of thrombin generation. The loss of the inhibitory effect was due to the loss of high-affinity prostanoid receptors, which may contribute to atherogenesis in SCI. Incubation of normal, non-SCI platelets in SCI plasma (n = 12) also resulted in the loss of high-affinity binding of PGI2 (Kd1 = 9.1 ± 2.0 nM; n1 = 170 ± 32 sites per cell vs. Kd1 = 7.2 ± 1.1 nM; n1 = 23 ± 8 sites per cell), with no significant change in the low-affinity receptors (Kd2 = 1.9 ± 0.1 μM; n2 = 1,832 ± 232 sites per cell vs. Kd2 = 1.6 ± 0.1 μM; n2 = 1,740 ± 161 sites per cell) as determined by Scatchard analysis of the binding of [3H]PGE1. The loss of high-affinity PGI2 binding led to the failure of PGI2 to inhibit the platelet-stimulated thrombin generation. The increase of cellular cyclic AMP level, mediated through the binding of PGI2 to low-affinity receptors in platelets, was unaffected in SCI platelets. PAGE and immunoblot of SCI plasma showed the presence of an IgG band, which specifically blocked the binding of [3H]PGE1 to the high-affinity PGI2 receptors of normal platelets. PAGE of the reduced IgG band, the amino acid sequence of the novel band as a heavy chain of IgG that inhibits the binding of [3H]PGE1 to the high-affinity platelet PGI2 receptor, demonstrates that the specific recognition and inhibition of high-affinity PGI2 binding to platelets was due to an anti-prostacyclin receptor antibody present in SCI plasma.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A single-chain Fv (scFv) fusion phage library derived from random combinations of VH and VL (variable heavy and light chains) domains in the antibody repertoire of a vaccinated melanoma patient was previously used to isolate clones that bind specifically to melanoma cells. An unexpected finding was that one of the clones encoded a truncated scFv molecule with most of the VL domain deleted, indicating that a VH domain alone can exhibit tumor-specific binding. In this report a VH fusion phage library containing VH domains unassociated with VL domains was compared with a scFv fusion phage library as a source of melanoma-specific clones; both libraries contained the same VH domains from the vaccinated melanoma patient. The results demonstrate that the clones can be isolated from both libraries, and that both libraries should be used to optimize the chance of isolating clones binding to different epitopes. Although this strategy has been tested only for melanoma, it is also applicable to other cancers. Because of their small size, human origin and specificity for cell surface tumor antigens, the VH and scFv molecules have significant advantages as tumor-targeting molecules for diagnostic and therapeutic procedures and can also serve as probes for identifying the cognate tumor antigens.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The 2.0-Å resolution x-ray crystal structure of a novel trimeric antibody fragment, a “triabody,” has been determined. The trimer is made up of polypeptides constructed in a manner identical to that previously described for some “diabodies”: a VL domain directly fused to the C terminus of a VH domain—i.e., without any linker sequence. The trimer has three Fv heads with the polypeptides arranged in a cyclic, head-to-tail fashion. For the particular structure reported here, the polypeptide was constructed with a VH domain from one antibody fused to the VL domain from an unrelated antibody giving rise to “combinatorial” Fvs upon formation of the trimer. The structure shows that the exchange of the VL domain from antibody B1-8, a Vλ domain, with the VL domain from antibody NQ11, a Vκ domain, leads to a dramatic conformational change in the VH CDR3 loop of antibody B1-8. The magnitude of this change is similar to the largest of the conformational changes observed in antibody fragments in response to antigen binding. Combinatorial pairing of VH and VL domains constitutes a major component of antibody diversity. Conformationally flexible antigen-binding sites capable of adapting to the specific CDR3 loop context created upon VH–VL pairing may be employed by the immune system to maximize the structural diversity of the immune response.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Catalytic antibodies have shown great promise for catalyzing a tremendously diverse set of natural and unnatural chemical transformations. However, few catalytic antibodies have efficiencies that approach those of natural enzymes. In principle, random mutagenesis procedures such as phage display could be used to improve the catalytic activities of existing antibodies; however, these studies have been hampered by difficulties in the recombinant expression of antibodies. Here, we have grafted the antigen binding loops from a murine-derived catalytic antibody, 17E8, onto a human antibody framework in an effort to overcome difficulties associated with recombinant expression and phage display of this antibody. “Humanized” 17E8 retained similar catalytic and hapten binding properties as the murine antibody while levels of functional Fab displayed on phage were 200-fold higher than for a murine variable region/human constant region chimeric Fab. This construct was used to prepare combinatorial libraries. Affinity panning of these resulted in the selection of variants with 2- to 8-fold improvements in binding affinity for a phosphonate transition-state analog. Surprisingly, none of the affinity-matured variants was more catalytically active than the parent antibody and some were significantly less active. By contrast, a weaker binding variant was identified with 2-fold greater catalytic activity and incorporation of a single substitution (Tyr-100aH → Asn) from this variant into the parent antibody led to a 5-fold increase in catalytic efficiency. Thus, phage display methods can be readily used to optimize binding of catalytic antibodies to transition-state analogs, and when used in conjunction with limited screening for catalysis can identify variants with higher catalytic efficiencies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aa3 type cytochrome c oxidase consisting of the core subunits I and II only was isolated from the soil bacterium Paracoccus denitrificans and crystallized as complex with a monoclonal antibody Fv fragment. Crystals could be grown in the presence of a number of different nonionic detergents. However, only undecyl-β-d-maltoside and cyclohexyl-hexyl-β-d-maltoside yielded well-ordered crystals suitable for high resolution x-ray crystallographic studies. The crystals belong to space group P212121 and diffract x-rays to at least 2.5 Å (1 Å = 0.1 nm) resolution using synchrotron radiation. The structure was determined to a resolution of 2.7 Å using molecular replacement and refined to a crystallographic R-factor of 20.5% (Rfree = 25.9%). The refined model includes subunits I and II and the 2 chains of the Fv fragment, 2 heme A molecules, 3 copper atoms, and 1 Mg/Mn atom, a new metal (Ca) binding site, 52 tentatively identified water molecules, and 9 detergent molecules. Only four of the water molecules are located in the cytoplasmic half of cytochrome c oxidase. Most of them are near the interface of subunits I and II. Several waters form a hydrogen-bonded cluster, including the heme propionates and the Mg/Mn binding site. The Fv fragment binds to the periplasmic polar domain of subunit II and is critically involved in the formation of the crystal lattice. The crystallization procedure is well reproducible and will allow for the analysis of the structures of mechanistically interesting mutant cytochrome c oxidases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The tetraspanin CD81 is ubiquitously expressed and associated with CD19 on B lymphocytes and with CD4 and CD8 on T lymphocytes. Analysis of mice with disrupted CD81 gene reveals normal T cells but a distinct abnormality in B cells consisting of decreased expression of CD19 and severe reduction in peritoneal B-1 cells. CD81-deficient B cells responded normally to surface IgM crosslinking, but had severely impaired calcium influx following CD19 engagement. CD81-deficient mice had increased serum IgM and IgA and an exaggerated antibody response to the type II T independent antigen TNP-Ficoll. These results suggest that CD81 is important for CD19 signaling and B cell function.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Reactive immunization has emerged as a new tool for the study of biological catalysis. A powerful application resulted in catalytic antibodies that use an enamine mechanism akin to that used by the class I aldolases. With regard to the evolution of enzyme mechanisms, we investigated the utility of an enamine pathway for the allylic rearrangement exemplified by Δ5-3-ketosteroid isomerase (KSI; EC 5.3.3.1). Our aldolase antibodies were found to catalyze the isomerization of both steroid model compounds and steroids. The kinetic and chemical studies showed that the antibodies afforded rate accelerations up to a factor of 104 by means of an enamine mechanism in which imine formation was the rate-determining step. In light of our observations and the enzyme studies by other workers, we suggest that an enamine pathway could have been an early, viable KSI mechanism. Although this pathway is amenable to optimization for increased catalytic power, it appears that certain factors precluded its evolution in known KSI enzymes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ABC transporter, P-glycoprotein, is an integral membrane protein that mediates the ATP-driven efflux of drugs from multidrug-resistant cancer and HIV-infected cells. Anti-P-glycoprotein antibody C219 binds to both of the ATP-binding regions of P-glycoprotein and has been shown to inhibit its ATPase activity and drug binding capacity. C219 has been widely used in a clinical setting as a tumor marker, but recent observations of cross-reactivity with other proteins, including the c-erbB2 protein in breast cancer cells, impose potential limitations in detecting P-glycoprotein. We have determined the crystal structure at a resolution of 2.4 Å of the variable fragment of C219 in complex with an epitope peptide derived from the nucleotide binding domain of P-glycoprotein. The 14-residue peptide adopts an amphipathic α-helical conformation, a secondary structure not previously observed in structures of antibody–peptide complexes. Together with available biochemical data, the crystal structure of the C219-peptide complex indicates the molecular basis of the cross-reactivity of C219 with non-multidrug resistance-associated proteins. Alignment of the C219 epitope with the recent crystal structure of the ATP-binding subunit of histidine permease suggests a structural basis for the inhibition of the ATP and drug binding capacity of P-glycoprotein by C219. The results provide a rationale for the development of C219 mutants with improved specificity and affinity that could be useful in antibody-based P-glycoprotein detection and therapy in multidrug resistant cancers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The anti-idiotype approach is based on the assumption that an antibody specific for a receptor-binding domain of a ligand could be structurally related to the receptor. Therefore, a structural mimic of a receptor-binding domain, selected with an anti-ligand antibody, might be a functional substrate for the receptor. This hypothesis was addressed here by generating antibodies recognizing the Rev-nuclear export signal (NES). A functional NES is required for active export, presumably by interacting directly or indirectly with the nuclear pore complex. Anti-NES antibodies were used to isolate RNA mimics of the NES peptide from combinatorial RNA libraries. The RNA-mimics are exported actively, block Rev-dependent export of a reporter RNA, and inhibit cap-dependent U1 snRNA export in Xenopus oocytes, properties previously reported for NES-peptide conjugates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigated the relative free energies of hapten binding to the germ line and mature forms of the 48G7 antibody Fab fragments by applying a continuum model to structures sampled from molecular dynamics simulations in explicit solvent. Reasonable absolute and very good relative free energies were obtained. As a result of nine somatic mutations that do not contact the hapten, the affinity-matured antibody binds the hapten >104 tighter than the germ line antibody. Energetic analysis reveals that van der Waals interactions and nonpolar contributions to solvation are similar and drive the formations of both the germ line and mature antibody–hapten complexes. Affinity maturation of the 48G7 antibody therefore appears to occur through reorganization of the combining site geometry in a manner that optimizes the balance of gaining favorable electrostatic interactions with the hapten and losing those with solvent during the binding process. As reflected by lower rms fluctuations in the antibody–hapten complex, the mature complex undergoes more restricted fluctuations than the germ line complex. The dramatically increased affinity of the 48G7 antibody over its germ line precursor is thus made possible by electrostatic optimization.