6 resultados para AMIDE GROUP, BACKBONE

em National Center for Biotechnology Information - NCBI


Relevância:

90.00% 90.00%

Publicador:

Resumo:

The alanine helix provides a model system for studying the energetics of interaction between water and the helical peptide group, a possible major factor in the energetics of protein folding. Helix formation is enthalpy-driven (−1.0 kcal/mol per residue). Experimental transfer data (vapor phase to aqueous) for amides give the enthalpy of interaction with water of the amide group as ≈−11.5 kcal/mol. The enthalpy of the helical peptide hydrogen bond, computed for the gas phase by quantum mechanics, is −4.9 kcal/mol. These numbers give an enthalpy deficit for helix formation of −7.6 kcal/mol. To study this problem, we calculate the electrostatic solvation free energy (ESF) of the peptide groups in the helical and β-strand conformations, by using the delphi program and parse parameter set. Experimental data show that the ESF values of amides are almost entirely enthalpic. Two key results are: in the β-strand conformation, the ESF value of an interior alanine peptide group is −7.9 kcal/mol, substantially less than that of N-methylacetamide (−12.2 kcal/mol), and the helical peptide group is solvated with an ESF of −2.5 kcal/mol. These results reduce the enthalpy deficit to −1.5 kcal/mol, and desolvation of peptide groups through partial burial in the random coil may account for the remainder. Mutant peptides in the helical conformation show ESF differences among nonpolar amino acids that are comparable to observed helix propensity differences, but the ESF differences in the random coil conformation still must be subtracted.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

N-Methyl-D-aspartate (NMDA) receptors are blocked at hyperpolarizing potentials by extracellular Mg ions. Here we present a detailed kinetic analysis of the Mg block in recombinant wild-type and mutant NMDA receptors. We find that the Mg binding site is the same in the wild-type and native hippocampal NMDA receptor channels. In the mutant channels, however, Mg ions bind with a 10-fold lower affinity. On the basis of these results, we propose that the energy well at the Mg binding site in the mutants is shallow and the binding is unstable because of an increase in the rate of dissociation. We postulate that the dipole formed by the amide group of asparagine 614 of the epsilon 1 subunit contributes to the structure of the binding site but predict that additional ligands will be involved in coordinating Mg ions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hydrogen–deuterium exchange experiments have been used previously to investigate the structures of well defined states of a given protein. These include the native state, the unfolded state, and any intermediates that can be stably populated at equilibrium. More recently, the hydrogen–deuterium exchange technique has been applied in kinetic labeling experiments to probe the structures of transiently formed intermediates on the kinetic folding pathway of a given protein. From these equilibrium and nonequilibrium studies, protection factors are usually obtained. These protection factors are defined as the ratio of the rate of exchange of a given backbone amide when it is in a fully solvent-exposed state (usually obtained from model peptides) to the rate of exchange of that amide in some state of the protein or in some intermediate on the folding pathway of the protein. This definition is straightforward for the case of equilibrium studies; however, it is less clear-cut for the case of transient kinetic intermediates. To clarify the concept for the case of burst-phase intermediates, we have introduced and mathematically defined two different types of protection factors: one is Pstruc, which is more related to the structure of the intermediate, and the other is Papp, which is more related to the stability of the intermediate. Kinetic hydrogen–deuterium exchange data from disulfide-intact ribonuclease A and from cytochrome c are discussed to explain the use and implications of these two definitions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have investigated the role of 2′-OH groups in the specific interaction between the acceptor stem of Escherichia coli tRNACys and cysteine-tRNA synthetase. This interaction provides for the high aminoacylation specificity observed for cysteine-tRNA synthetase. A synthetic RNA microhelix that recapitulates the sequence of the acceptor stem was used as a substrate and variants containing systematic replacement of the 2′-OH by 2′-deoxy or 2′-O-methyl groups were tested. Except for position U73, all substitutions had little effect on aminoacylation. Interestingly, the deoxy substitution at position U73 had no effect on aminoacylation, but the 2′-O-methyl substitution decreased aminoacylation by 10-fold and addition of the even bulkier 2′-O-propyl group decreased aminoacylation by another 2-fold. The lack of an effect by the deoxy substitution suggests that the hydrogen bonding potential of the 2′-OH at position U73 is unimportant for aminoacylation. The decrease in activity upon alkyl substitution suggests that the 2′-OH group instead provides a monitor of the steric environment during the RNA–synthetase interaction. The steric role was confirmed in the context of a reconstituted tRNA and is consistent with the observation that the U73 base is the single most important determinant for aminoacylation and therefore is a site that is likely to be in close contact with cysteine-tRNA synthetase. A steric role is supported by an NMR-based structural model of the acceptor stem, together with biochemical studies of a closely related microhelix. This role suggests that the U73 binding site for cysteine-tRNA synthetase is sterically optimized to accommodate a 2′-OH group in the backbone, but that the hydroxyl group itself is not involved in specific hydrogen bonding interactions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Despite the biological and medical importance of signal transduction via Ras proteins and despite considerable kinetic and structural studies of wild-type and mutant Ras proteins, the mechanism of Ras-catalyzed GTP hydrolysis remains controversial. We take a different approach to this problem: the uncatalyzed hydrolysis of GTP is analyzed, and the understanding derived is applied to the Ras-catalyzed reaction. Evaluation of previous mechanistic proposals from this chemical perspective suggests that proton abstraction from the attacking water by a general base and stabilization of charge development on the gamma-phosphoryl oxygen atoms would not be catalytic. Rather, this analysis focuses attention on the GDP leaving group, including the beta-gamma bridge oxygen of GTP, the atom that undergoes the largest change in charge in going from the ground state to the transition state. This leads to a new catalytic proposal in which a hydrogen bond from the backbone amide of Gly-13 to this bridge oxygen is strengthened in the transition state relative to the ground state, within an active site that provides a template complementary to the transition state. Strengthened transition state interactions of the active site lysine, Lys-16, with the beta-nonbridging phosphoryl oxygens and a network of interactions that positions the nucleophilic water molecule and gamma-phosphoryl group with respect to one another may also contribute to catalysis. It is speculated that a significant fraction of the GAP-activated GTPase activity of Ras arises from an additional interaction of the beta-gamma bridge oxygen with an Arg side chain that is provided in trans by GAP. The conclusions for Ras and related G proteins are expected to apply more widely to other enzymes that catalyze phosphoryl (-PO(3)2-) transfer, including kinases and phosphatases.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have investigated the efficiency of packing by calculating intramolecular packing density above and below peptide planes of internal beta-pleated sheet residues in five globular proteins. The orientation of interest was chosen to allow study of regions that are approximately perpendicular to the faces of beta-pleated sheets. In these locations, nonbonded van der Waals packing interactions predominate over hydrogen bonding and solvent interactions. We observed considerable variability in packing densities within these regions, confirming that the interior packing of a protein does not result in uniform occupation of the available space. Patterns of fluctuation in packing density suggest that the regular backbone-to-backbone network of hydrogen bonds is not likely to be interrupted to maximize van der Waals interactions. However, high-density packing tends to occur toward the ends of beta-structure strands where hydrogen bonds are more likely to involve nonpolar side-chain groups or solvent molecules. These features result in internal protein folding with a central low-density core surrounded by a higher-density subsurface shell, consistent with our previous calculations regarding overall protein packing density.