56 resultados para ALVEOLAR MACROPHAGE

em National Center for Biotechnology Information - NCBI


Relevância:

70.00% 70.00%

Publicador:

Resumo:

The incidence of tuberculosis is increasing on a global scale, in part due to its strong association with human immunodeficiency virus (HIV) infection. Attachment of Mycobacterium tuberculosis to its host cell, the alveolar macrophage (AM), is an important early step in the pathogenesis of infection. Bronchoalveolar lavage of HIV-infected individuals demonstrated the presence of a factor which significantly enhances the attachment of tubercle bacilli to AMs 3-fold relative to a normal control population. This factor is surfactant protein A (SP-A). SP-A levels are increased in the lungs of HIV-infected individuals. SP-A levels and attachment of M. tuberculosis to AMs inversely correlate with peripheral blood CD4 lymphocyte counts. Elevated concentrations of SP-A during the progression of HIV infection may represent an important nonimmune risk factor for acquiring tuberculosis, even before significant depletion of CD4 lymphocytes in the peripheral blood occurs.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Members of the fibroblast growth factor (FGF) family play a critical role in embryonic lung development and adult lung physiology. The in vivo investigation of the role FGFs play in the adult lung has been hampered because the constitutive pulmonary expression of these factors often has deleterious effects and frequently results in neonatal lethality. To circumvent these shortcomings, we expressed FGF-3 in the lungs under the control of the progesterone antagonist-responsive binary transgenic system. Four binary transgenic lines were obtained that showed ligand-dependent induction of FGF-3 with induced levels of FGF-3 expression dependent on the levels of expression of the GLp65 regulator as well as the dose of the progesterone antagonist, RU486, administered. FGF-3 expression in the adult mouse lung resulted in two phenotypes depending on the levels of induction of FGF-3. Low levels of FGF-3 expression resulted in massive free alveolar macrophage infiltration. High levels of FGF-3 expression resulted in diffuse alveolar type II cell hyperplasia. Both phenotypes were reversible after the withdrawal of RU486. This system will be a valuable means of investigating the diverse roles of FGFs in the adult lung.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Gene targeting was used to create mice with a null mutation of the gene encoding the common beta subunit (beta C) of the granulocyte-macrophage colony-stimulating factor (GM-CSF), interleukin 3 (IL-3; multi-CSF), and interleukin 5 (IL-5) receptor complexes (beta C-/- mice). High-affinity binding of GM-CSF was abolished in beta C-/- bone marrow cells, while cells from heterozygous animals (beta C+/- mice) showed an intermediate number of high-affinity receptors. Binding of IL-3 was unaffected, confirming that the IL-3-specific beta chain remained intact. Eosinophil numbers in peripheral blood and bone marrow of beta C-/- animals were reduced, while other hematological parameters were normal. In clonal cultures of beta C-/- bone marrow cells, even high concentrations of GM-CSF and IL-5 failed to stimulate colony formation, but the cells exhibited normal quantitative responsiveness to stimulation by IL-3 and other growth factors. beta C-/- mice exhibited normal development and survived to young adult life, although they developed pulmonary peribronchovascular lymphoid infiltrates and areas resembling alveolar proteinosis. There was no detectable difference in the systemic clearance and distribution of GM-CSF between beta C-/- and wild-type littermates. The data establish that beta C is normally limiting for high-affinity binding of GM-CSF and demonstrate that systemic clearance of GM-CSF is not mediated via such high-affinity receptor complexes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Infection with HIV-1 results in pronounced immune suppression and susceptibility to opportunistic infections (OI). Reciprocally, OI augment HIV-1 replication. As we have shown for Mycobacterium avium complex (MAC) and Pneumocystis carinii, macrophages infected with opportunistic pathogens and within lymphoid tissues containing OI, exhibit striking levels of viral replication. To explore potential underlying mechanisms for increased HIV-1 replication associated with coinfection, blood monocytes were exposed to MAC antigens (MAg) or viable MAC and their levels of tumor necrosis factor α (TNFα) and HIV-1 coreceptors monitored. MAC enhanced TNFα production in vitro, consistent with its expression in coinfected lymph nodes. Using a polyclonal antibody to the CCR5 coreceptor that mediates viral entry of macrophage tropic HIV-1, a subset of unstimulated monocytes was shown to be CCR5-positive by fluorescence-activated cell sorter analysis. After stimulation with MAg or infection with MAC, CCR5 expression was increased at both the mRNA level and on the cell surface. Up-regulation of CCR5 by MAC was not paralleled by an increase in the T cell tropic coreceptor, CXCR4. Increases in NF-κB, TNFα, and CCR5 were consistent with the enhanced production of HIV-1 in MAg-treated adherent macrophage cultures as measured by HIV-1 p24 levels. Increased CCR5 was also detected in coinfected lymph nodes as compared with tissues with only HIV-1. The increased production of TNFα, together with elevated expression of CCR5, provide potential mechanisms for enhanced infection and replication of HIV-1 by macrophages in OI-infected cells and tissues. Consequently, treating OI may inhibit not only the OI-induced pathology, but also limit the viral burden.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The β-chemokine receptor CCR-5 is essential for the efficient entry of primary macrophage-tropic HIV-1 isolates into CD4+ target cells. To study CCR-5-dependent cell-to-cell fusion, we have developed an assay system based on the infection of CD4+ CCR-5+ HeLa cells with a Semliki Forest virus recombinant expressing the gp120/gp41 envelope (Env) from a primary clade B HIV-1 isolate (BX08), or from a laboratory T cell line-adapted strain (LAI). In this system, gp120/gp41 of the “nonsyncytium-inducing,” primary, macrophage-tropic HIV-1BX08 isolate, was at least as fusogenic as that of the “syncytium-inducing” HIV-1LAI strain. BX08 Env-mediated fusion was inhibited by the β-chemokines RANTES (regulated upon activation, normal T cell expressed and secreted) and macrophage inflammatory proteins 1β (MIP-1β) and by antibodies to CD4, whereas LAI Env-mediated fusion was insensitive to these β-chemokines. In contrast soluble CD4 significantly reduced LAI, but not BX08 Env-mediated fusion, suggesting that the primary isolate Env glycoprotein has a reduced affinity for CD4. The domains in gp120/gp41 involved in the interaction with the CD4 and CCR-5 molecules were probed using monoclonal antibodies. For the antibodies tested here, the greatest inhibition of fusion was observed with those directed to conformation-dependent, rather than linear epitopes. Efficient inhibition of fusion was not restricted to epitopes in any one domain of gp120/gp41. The assay was sufficiently sensitive to distinguish between antibody- and β-chemokine-mediated fusion inhibition using serum samples from patient BX08, suggesting that the system may be useful for screening human sera for the presence of biologically significant antibodies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nonpathogenic, resident bacteria participate in the pathogenesis of inflammation in the small intestine, but the molecular messages produced by such bacteria are unknown. Inflammatory responses involve the recruitment of specific leukocyte subsets. We, therefore, hypothesized that butyrate, a normal bacterial metabolite, may modulate chemokine secretion by epithelial cells, by amplifying their response to proinflammatory signals. We studied the expression of the chemokine, macrophage inflammatory protein-2 (MIP-2) by the rat small intestinal epithelial cell line, IEC-6. Cells were stimulated with lipopolysaccharide or with interleukin 1β (IL-1β) and incubated with sodium butyrate. Acetylation of histones was examined in Triton X acetic acid–urea gels by PAGE. Unstimulated IEC-6 cells did not secrete MIP-2. However, lipopolysaccharide and IL-1β induced MIP-2 expression. Butyrate enhanced MIP-2 secretion both in lipopolysaccharide-stimulated and IL-1β-stimulated enterocytes; but butyrate alone did not induce MIP-2 expression. Butyrate increased the acetylation of histones extracted from the nuclei of IEC-6 cells. Furthermore, acetylation of histones (induced by trichostatin A, a specific inhibitor of histone deacetylase) enhanced MIP-2 expression by cells stimulated with IL-1β. In conclusion, trichostatin A reproduced the effects of butyrate on MIP-2 secretion. Butyrate, therefore, increases MIP-2 secretion in stimulated cells by increasing histone acetylation. We speculate that butyrate carries information from bacteria to epithelial cells. Epithelial cells transduce this signal through histone deacetylase, modulating the secretion of chemokines.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lutropin (LH) and other glycoproteins bearing oligosaccharides with the terminal sequence SO4-4-GalNAcβ1,4GlcNAcβ1,4Man- (S4GGnM) are rapidly removed from the circulation by an S4GGnM-specific receptor (S4GGnM-R) expressed at the surface of hepatic endothelial cells. The S4GGnM-R isolated from rat liver is closely related to the macrophage mannose-specific receptor (Man-R) isolated from rat lung both antigenically and structurally. The S4GGnM-R and Man-R isolated from these tissues nonetheless differ in their ability to bind ligands bearing terminal GalNAc-4-SO4 or Man. In this paper, we have explored the structural relationship between the Man-R and the S4GGnM-R by examining the properties of the recombinant Man-R in the form of a transmembrane protein and a soluble chimeric fusion protein in which the transmembrane and cytosolic domains have been replaced by the Fc region of human IgG1. Like the S4GGnM-R isolated from liver, the chimeric fusion protein is able to bind ligands terminating with GalNAc-4-SO4 and Man at independent sites. When expressed in CHO cells the recombinant Man-R is able to mediate the uptake of ligands bearing either terminal GalNAc-4-SO4 or terminal Man. We propose that the Man-R be renamed the Man/S4GGnM receptor on the basis of its multiple and independent specificities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Macrophages play a key role in both normal and pathological processes involving immune and inflammatory responses, to a large extent through their capacity to secrete a wide range of biologically active molecules. To identify some of these as yet not characterized molecules, we have used a subtraction cloning approach designed to identify genes expressed in association with macrophage activation. One of these genes, designated macrophage inhibitory cytokine 1 (MIC-1), encodes a protein that bears the structural characteristics of a transforming growth factor β (TGF-β) superfamily cytokine. Although it belongs to this superfamily, it has no strong homology to existing families, indicating that it is a divergent member that may represent the first of a new family within this grouping. Expression of MIC-1 mRNA in monocytoid cells is up-regulated by a variety of stimuli associated with activation, including interleukin 1β, tumor necrosis factor α (TNF-α), interleukin 2, and macrophage colony-stimulating factor but not interferon γ, or lipopolysaccharide (LPS). Its expression is also increased by TGF-β. Expression of MIC-1 in CHO cells results in the proteolytic cleavage of the propeptide and secretion of a cysteine-rich dimeric protein of Mr 25 kDa. Purified recombinant MIC-1 is able to inhibit lipopolysaccharide -induced macrophage TNF-α production, suggesting that MIC-1 acts in macrophages as an autocrine regulatory molecule. Its production in response to secreted proinflammatory cytokines and TGF-β may serve to limit the later phases of macrophage activation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The stimulation by Flk2-ligand (FL) of blast colony formation by murine bone marrow cells was selectively potentiated by the addition of regulators sharing in common the gp130 signaling receptor–leukemia inhibitory factor (LIF), oncostatin M, interleukin 11, or interleukin 6. Recloning of blast colony cells indicated that the majority were progenitor cells committed exclusively to macrophage formation and responding selectively to proliferative stimulation by macrophage colony-stimulating factor. Reculture of blast colony cells initiated by FL plus LIF in cultures containing granulocyte/macrophage colony-stimulating factor plus tumor necrosis factor α indicated that at least some of the cells were capable of maturation to dendritic cells. The cells forming blast colonies in response to FL plus LIF were unrelated to those forming blast colonies in response to stimulation by stem cell factor and appear to be a distinct subset of mature hematopoietic stem cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Earlier studies have shown that Kaposi sarcomas contain cells infected with human herpesvirus (HHV) 6B, and in current studies we report that both AIDS-associated and classic-sporadic Kaposi sarcoma contain HHV-7 genome sequences detectable by PCR. To determine the distribution of HHV-7-infected cells relative to those infected with HHV-6, sections from paraffin-embedded tissues were allowed to react with antibodies to HHV-7 virion tegument phosphoprotein pp85 and to HHV-6B protein p101. The antibodies are specific for HHV-7 and HHV-6B, respectively, and they retained reactivity for antigens contained in formalin-fixed, paraffin-embedded tissue samples. We report that (i) HHV-7 pp85 was present in 9 of 32 AIDS-associated Kaposi sarcomas, and in 1 of 7 classical-sporadic HIV-negative Kaposi sarcomas; (ii) HHV-7 pp85 was detected primarily in cells bearing the CD68 marker characteristic of the monocyte/macrophage lineage present in or surrounding the Kaposi sarcoma lesions; and (iii) in a number of Kaposi sarcoma specimens, tumor-associated CD68+ monocytes/macrophages expressed simultaneously antigens from both HHV-7 and HHV-6B, and therefore appeared to be doubly infected with the two viruses. CD68+ monocytes/macrophages infected with HHV-7 were readily detectable in Kaposi sarcoma, but virtually absent from other normal or pathological tissues that harbor macrophages. Because all of the available data indicate that HHV-7 infects CD4+ T lymphocytes, these results suggest that the environment of the Kaposi sarcoma (i) attracts circulating peripheral lymphocytes and monocytes, triggers the replication of latent viruses, and thereby increases the local concentration of viruses, (ii) renders CD68+ monocytes/macrophages susceptible to infection with HHV-7, and (iii) the combination of both events enables double infections of cells with both HHV-6B and HHV-7.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In Alzheimer disease (AD), neurons are thought to be subjected to the deleterious cytotoxic effects of activated microglia. We demonstrate that binding of amyloid-beta peptide (Aβ) to neuronal Receptor for Advanced Glycation Endproduct (RAGE), a cell surface receptor for Aβ, induces macrophage-colony stimulating factor (M-CSF) by an oxidant sensitive, nuclear factor κB-dependent pathway. AD brain shows increased neuronal expression of M-CSF in proximity to Aβ deposits, and in cerebrospinal fluid from AD patients there was ≈5-fold increased M-CSF antigen (P < 0.01), compared with age-matched controls. M-CSF released by Aβ-stimulated neurons interacts with its cognate receptor, c-fms, on microglia, thereby triggering chemotaxis, cell proliferation, increased expression of the macrophage scavenger receptor and apolipoprotein E, and enhanced survival of microglia exposed to Aβ, consistent with pathologic findings in AD. These data delineate an inflammatory pathway triggered by engagement of Aβ on neuronal RAGE. We suggest that M-CSF, thus generated, contributes to the pathogenesis of AD, and that M-CSF in cerebrospinal fluid might provide a means for monitoring neuronal perturbation at an early stage in AD.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The granulocyte-macrophage colony-stimulating factor (GM-CSF) gene is part of a cytokine gene cluster and is directly linked to a conserved upstream inducible enhancer. Here we examined the in vitro and in vivo functions of the human GM-CSF enhancer and found that it was required for the correctly regulated expression of the GM-CSF gene. An inducible DNase I-hypersensitive site appeared within the enhancer in cell types such as T cells, myeloid cells, and endothelial cells that express GM-CSF, but not in nonexpressing cells. In a panel of transfected cells the human GM-CSF enhancer was activated in a tissue-specific manner in parallel with the endogenous gene. The in vivo function of the enhancer was examined in a transgenic mouse model that also addressed the issue of whether the GM-CSF locus was correctly regulated in isolation from other segments of the cytokine gene cluster. After correction for copy number the mean level of human GM-CSF expression in splenocytes from 11 lines of transgenic mice containing a 10.5-kb human GM-CSF transgene was indistinguishable from mouse GM-CSF expression (99% ± 56% SD). In contrast, a 9.8-kb transgene lacking just the enhancer had a significantly reduced (P = 0.004) and more variable level of activity (29% ± 89% SD). From these studies we conclude that the GM-CSF enhancer is required for the correct copy number-dependent expression of the human GM-CSF gene and that the GM-CSF gene is regulated independently from DNA elements associated with the closely linked IL-3 gene or other members of the cytokine gene cluster.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Immunological functions were analyzed in mice lacking granulocyte/macrophage colony-stimulating factor (GM-CSF). The response of splenic T cells to allo-antigens, anti-mouse CD3 mAb, interleukin 2 (IL-2), or concanavalin A was comparable in GM-CSF +/+ and GM-CSF −/− mice. To investigate the responses of CD8+ and CD4+ T cells against exogenous antigens, mice were immunized with ovalbumin peptide or with keyhole limpet hemocyanin (KLH). Cytotoxic CD8+ T cells with specificity for ovalbumin peptide could not be induced in GM-CSF −/− mice. After immunization with KLH, there was a delay in IgG generation, particularly IgG2a, in GM-CSF −/− mice. Purified CD4+ T cells from GM-CSF −/− mice immunized with KLH showed impaired proliferative responses and produced low amounts of interferon-γ (IFN-γ) and IL-4 when KLH-pulsed B cells or spleen cells were used as antigen presenting cells (APC). When enriched dendritic cells (DC) were used as APC, CD4+ T cells from GM-CSF −/− mice proliferated as well as those from GM-CSF +/+ mice and produced high amounts of IFN-γ and IL-4. To analyze the rescue effect of DC on CD4+ T cells, supernatants from (i) CD4+ T cells cultured with KLH-pulsed DC or (ii) DC cultured with recombinant GM-CSF were transferred to cultures of CD4+ T cells and KLH-pulsed spleen cells from GM-CSF −/− mice. Supernatants from both DC sources contained a factor or factors that restored proliferative responses and IFN-γ production of CD4+ T cells from GM-CSF −/− mice.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Alveolar rhabdomyosarcoma (ARMS) cells often harbor one of two unique chromosomal translocations, either t(2;13)(q35;q14) or t(1;13)(p36;q14). The chimeric proteins expressed from these rearrangements, PAX3-FKHR and PAX7-FKHR, respectively, are potent transcriptional activators. In an effort to exploit these unique cancer-specific molecules to achieve ARMS-specific expression of therapeutic genes, we have studied the expression of a minimal promoter linked to six copies of a PAX3 DNA binding site, prs-9. In transient transfections, expression of the prs-9-regulated reporter genes was ≈250-fold higher than expression of genes lacking the prs-9 sequences in cell lines derived from ARMS, but remained at or below baseline levels in other cells. High expression of these prs-9-regulated genes was also observed in a cancer cell line that lacks t(2;13) but was stably transfected with a plasmid expressing PAX3-FKHR. Transfection of a plasmid containing the diphtheria toxin A chain gene regulated by prs-9 sequences (pA3–6PED) was selectively cytotoxic for PAX3-FKHR-expressing cells. This was shown by inhibition of gene expression from cotransfected plasmids and by direct cytotoxicity after transfected cells were isolated by cell sorting. Gene transfer of pA3–6PED may thus be useful as a cancer-specific treatment strategy for t(2;13)- or t(1;13)-positive ARMS. Furthermore, gene transfer of fusion protein-regulated toxin genes might also be applied to the treatment of other cancers that harbor cancer-specific chromosomal translocations involving transcription factors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mechanisms responsible for the induction of matrix-degrading proteases during lung injury are ill defined. Macrophage-derived mediators are believed to play a role in regulating synthesis and turnover of extracellular matrix at sites of inflammation. We find a localized increase in the expression of the rat interstitial collagenase (MMP-13; collagenase-3) gene from fibroblastic cells directly adjacent to macrophages within silicotic rat lung granulomas. Conditioned medium from macrophages isolated from silicotic rat lungs was found to induce rat lung fibroblast interstitial collagenase gene expression. Conditioned medium from primary rat lung macrophages or J774 monocytic cells activated by particulates in vitro also induced interstitial collagenase gene expression. Tumor necrosis factor-α (TNF-α) alone did not induce interstitial collagenase expression in rat lung fibroblasts but did in rat skin fibroblasts, revealing tissue specificity in the regulation of this gene. The activity of the conditioned medium was found to be dependent on the combined effects of TNF-α and 12-lipoxygenase-derived arachidonic acid metabolites. The fibroblast response to this conditioned medium was dependent on de novo protein synthesis and involved the induction of nuclear activator protein-1 activity. These data reveal a novel requirement for macrophage-derived 12-lipoxygenase metabolites in lung fibroblast MMP induction and provide a mechanism for the induction of resident cell MMP gene expression during inflammatory lung processes.