10 resultados para ALTERNARIA SOLANI
em National Center for Biotechnology Information - NCBI
Resumo:
Two novel type I ribosome-inactivating proteins (RIPs) were found in the storage roots of Mirabilis expansa, an underutilized Andean root crop. The two RIPs, named ME1 and ME2, were purified to homogeneity by ammonium sulfate precipitation, cation-exchange perfusion chromatography, and C4 reverse-phase chromatography. The two proteins were found to be similar in size (27 and 27.5 kD) by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and their isoelectric points were determined to be greater than pH 10.0. Amino acid N-terminal sequencing revealed that both ME1 and ME2 had conserved residues characteristic of RIPs. Amino acid composition and western-blot analysis further suggested a structural similarity between ME1 and ME2. ME2 showed high similarity to the Mirabilis jalapa antiviral protein, a type I RIP. Depurination of yeast 26S rRNA by ME1 and ME2 demonstrated their ribosome-inactivating activity. Because these two proteins were isolated from roots, their antimicrobial activity was tested against root-rot microorganisms, among others. ME1 and ME2 were active against several fungi, including Pythium irregulare, Fusarium oxysporum solani, Alternaria solani, Trichoderma reesei, and Trichoderma harzianum, and an additive antifungal effect of ME1 and ME2 was observed. Antibacterial activity of both ME1 and ME2 was observed against Pseudomonas syringae, Agrobacterium tumefaciens, Agrobacterium radiobacter, and others.
Resumo:
M2 is a double-stranded RNA (dsRNA) element occurring in the hypovirulent isolate Rhs 1A1 of the plant pathogenic basidiomycete Rhizoctonia solani. Rhs 1A1 originated as a sector of the virulent field isolate Rhs 1AP, which contains no detectable amount of the M2 dsRNA. The complete sequence (3,570 bp) of the M2 dsRNA has been determined. A 6.9-kbp segment of total DNA from either Rhs 1A1 or Rhs 1AP hybridizes with an M2-specific cDNA probe. The sequences of M2 dsRNA and of PCR products generated from Rhs 1A1 total DNA were found to be identical. Thus this report describes a fungal host containing full-length DNA copies of a dsRNA element. A major portion of the M2 dsRNA is located in the cytoplasm, whereas a smaller amount is found in mitochondria. Based on either the universal or the mitochondrial genetic code of filamentous fungi, one strand of M2 encodes a putative protein of 754 amino acids. The resulting polypeptide has all four motifs of a dsRNA viral RNA-dependent RNA polymerase (RDRP) and is phylogenetically related to the RDRP of a mitochondrial dsRNA associated with hypovirulence in strain NB631 of Cryphonectria parasitica, incitant of chestnut blight. This polypeptide also has significant sequence similarity with two domains of a pentafunctional polypeptide, which catalyzes the five central steps of the shikimate pathway in yeast and filamentous fungi.
Resumo:
Fusarium moniliforme toxins (fumonisins) and Alternaria alternata lycopersici (AAL) toxins are members of a new class of sphinganine analog mycotoxins that occur widely in the food chain. These mycotoxins represent a serious threat to human and animal health, inducing both cell death and neoplastic events in mammals. The mechanisms by which this family of chemical congeners induce changes in cell homeostasis were investigated in African green monkey kidney cells (CV-1) by assessing the appearance of apoptosis, cell cycle regulation, and putative components of signal transduction pathways involved in apoptosis. Structurally, these mycotoxins resemble the sphingoid bases, sphingosine and sphinganine, that are reported to play critical roles in cell communication and signal transduction. The addition of fumonisin B1 or AAL toxin, TA, to CV-1 cells induced the stereotypical hallmarks of apoptosis, including the formation of DNA ladders, compaction of nuclear DNA, and the subsequent appearance of apoptotic bodies. Neither mycotoxin induced cell death, DNA ladders, or apoptotic bodies in CV-1 cells expressing simian virus 40 large T antigen (COS-7) at toxin concentrations that readily killed CV-1 cells. Fumonisin B1 induced cell cycle arrest in the G1 phase in CV-1 cells but not in COS-7 cells. AAL toxin TA did not arrest cell cycle progression in either cell line. The induction of apoptosis combined with the widespread presence of these compounds in food crops and animal feed identifies a previously unrecognized health risk to humans and livestock. These molecules also represent a new class of natural toxicants that can be used as model compounds to further characterize the molecular and biochemical pathways leading to apoptosis.
Resumo:
The endogenous plant hormones salicylic acid (SA) and jasmonic acid (JA), whose levels increase on pathogen infection, activate separate sets of genes encoding antimicrobial proteins in Arabidopsis thaliana. The pathogen-inducible genes PR-1, PR-2, and PR-5 require SA signaling for activation, whereas the plant defensin gene PDF1.2, along with a PR-3 and PR-4 gene, are induced by pathogens via an SA-independent and JA-dependent pathway. An Arabidopsis mutant, coi1, that is affected in the JA-response pathway shows enhanced susceptibility to infection by the fungal pathogens Alternaria brassicicola and Botrytis cinerea but not to Peronospora parasitica, and vice versa for two Arabidopsis genotypes (npr1 and NahG) with a defect in their SA response. Resistance to P. parasitica was boosted by external application of the SA-mimicking compound 2,6-dichloroisonicotinic acid [Delaney, T., et al. (1994) Science 266, 1247–1250] but not by methyl jasmonate (MeJA), whereas treatment with MeJA but not 2,6-dichloroisonicotinic acid elevated resistance to Alternaria brassicicola. The protective effect of MeJA against A. brassicicola was the result of an endogenous defense response activated in planta and not a direct effect of MeJA on the pathogen, as no protection to A. brassicicola was observed in the coi1 mutant treated with MeJA. These data point to the existence of at least two separate hormone-dependent defense pathways in Arabidopsis that contribute to resistance against distinct microbial pathogens.
Resumo:
Reactive oxygen species (ROS) are both signal molecules and direct participants in plant defense against pathogens. Many fungi synthesize mannitol, a potent quencher of ROS, and there is growing evidence that at least some phytopathogenic fungi use mannitol to suppress ROS-mediated plant defenses. Here we show induction of mannitol production and secretion in the phytopathogenic fungus Alternaria alternata in the presence of host-plant extracts. Conversely, we show that the catabolic enzyme mannitol dehydrogenase is induced in a non-mannitol-producing plant in response to both fungal infection and specific inducers of plant defense responses. This provides a mechanism whereby the plant can counteract fungal suppression of ROS-mediated defenses by catabolizing mannitol of fungal origin.
Resumo:
Transcripts for two genes expressed early in alfalfa nodule development (MsENOD40 and MsENOD2) are found in mycorrhizal roots, but not in noncolonized roots or in roots infected with the fungal pathogen Rhizoctonia solani. These same two early nodulin genes are expressed in uninoculated roots upon application of the cytokinin 6-benzylaminopurine. Correlated with the expression of the two early nodulin genes, we found that mycorrhizal roots contain higher levels of trans-zeatin riboside than nonmycorrhizal roots. These data suggest that there may be conservation of signal transduction pathways between the two symbioses—nitrogen-fixing nodules and phosphate-acquiring mycorrhizae.
Resumo:
Nicotiana tabacum 46-8 cultivar displays an incompatible interaction with race 0 of Phytophthora parasitica var. nicotianae (Ppn), a fungal pathogen of most tobacco cultivars. At the plant level, incompatibility is characterized by the induction of lipoxygenase (LOX, EC = 1.13.11.12) activity and localized hypersensitive cell death before defense gene activation. To evaluate the involvement of LOX in the onset of plant defense, tobacco 46-8 plants were genetically engineered using full-length or partial-length antisense (AS) tobacco LOX cDNA constructs. AS expression strongly reduced elicitor- and pathogen-induced LOX activity. Eight independent AS-LOX lines were selected and assayed for their response to Ppn. After root or stem inoculation with race 0, all AS-LOX lines but one displayed a compatible phenotype whereas control transformed plants, not containing the AS-LOX cassette, showed the typical incompatible reaction. The presence of the fungus in transgenic lines was demonstrated by PCR amplification of a Ppn-specific genomic sequence. A linear relationship was found between the extent of LOX suppression and the size of the lesion caused by the fungus. The AS-LOX plants also showed enhanced susceptibility toward the compatible fungus Rhizoctonia solani. The results demonstrate the strong involvement of LOX in the establishment of incompatibility in plant–microorganism interactions, consistent with its role in the defense of host plants.
Resumo:
Plants commonly respond to pathogen infection by increasing ethylene production, but it is not clear if this ethylene does more to promote disease susceptibility or disease resistance. Ethylene production and/or responsiveness can be altered by genetic manipulation. The present study used mutagenesis to identify soybean (Glycine max L. Merr.) lines with reduced sensitivity to ethylene. Two new genetic loci were identified, Etr1 and Etr2. Mutants were compared with isogenic wild-type parents for their response to different soybean pathogens. Plant lines with reduced ethylene sensitivity developed similar or less-severe disease symptoms in response to virulent Pseudomonas syringae pv glycinea and Phytophthora sojae, but some of the mutants developed similar or more-severe symptoms in response to Septoria glycines and Rhizoctonia solani. Gene-for-gene resistance against P. syringae expressing avrRpt2 remained effective, but Rps1-k-mediated resistance against P. sojae races 4 and 7 was disrupted in the strong ethylene-insensitive etr1-1 mutant. Rps1-k-mediated resistance against P. sojae race 1 remained effective, suggesting that the Rps1-k locus may encode more than one gene for disease resistance. Overall, our results suggest that reduced ethylene sensitivity can be beneficial against some pathogens but deleterious to resistance against other pathogens.
Resumo:
Pigmented naphthoquinone derivatives of shikonin are produced at specific times and in specific cells of Lithospermum erythrorhizon roots. Normal pigment development is limited to root hairs and root border cells in hairy roots grown on “noninducing” medium, whereas induction of additional pigment production by abiotic (CuSO4) or biotic (fungal elicitor) factors increases the amount of total pigment, changes the ratios of derivatives produced, and initiates production of pigment de novo in epidermal cells. When the biological activity of these compounds was tested against soil-borne bacteria and fungi, a wide range of sensitivity was recorded. Acetyl-shikonin and β-hydroxyisovaleryl-shikonin, the two most abundant derivatives in both Agrobacterium rhizogenes-transformed “hairy-root” cultures and greenhouse-grown plant roots, were the most biologically active of the seven compounds tested. Hyphae of the pathogenic fungi Rhizoctonia solani, Pythium aphanidermatum, and Nectria hematococca induced localized pigment production upon contact with the roots. Challenge by R. solani crude elicitor increased shikonin derivative production 30-fold. We have studied the regulation of this suite of related, differentially produced, differentially active compounds to understand their role(s) in plant defense at the cellular level in the rhizosphere.
Resumo:
Surface signaling plays a major role in fungal infection. Topographical features of the plant surface and chemicals on the surface can trigger germination of fungal spores and differentiation of the germ tubes into appressoria. Ethylene, the fruit-ripening hormone, triggers germination of conidia, branching of hyphae, and multiple appressoria formation in Colletotrichum, thus allowing fungi to time their infection to coincide with ripening of the host. Genes uniquely expressed during appressoria formation induced by topography and surface chemicals have been isolated. Disruption of some of them has been shown to decrease virulence on the hosts. Penetration of the cuticle by the fungus is assisted by fungal cutinase secreted at the penetration structure of the fungus. Disruption of cutinase gene in Fusarium solani pisi drastically decreased its virulence. Small amounts of cutinase carried by spores of virulent pathogens, upon contact with plant surface, release small amounts of cutin monomers that trigger cutinase gene expression. The promoter elements involved in this process in F. solani pisi were identified, and transcription factors that bind these elements were cloned. One of them, cutinase transcription factor 1, expressed in Escherichia coli, is phosphorylated. Several protein kinases from F. solani pisi were cloned. The kinase involved in phosphorylation of specific transcription factors and the precise role of phosphorylation in regulating cutinase gene transcription remain to be elucidated.