11 resultados para ALLYLIC AMINES

em National Center for Biotechnology Information - NCBI


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Reactive immunization has emerged as a new tool for the study of biological catalysis. A powerful application resulted in catalytic antibodies that use an enamine mechanism akin to that used by the class I aldolases. With regard to the evolution of enzyme mechanisms, we investigated the utility of an enamine pathway for the allylic rearrangement exemplified by Δ5-3-ketosteroid isomerase (KSI; EC 5.3.3.1). Our aldolase antibodies were found to catalyze the isomerization of both steroid model compounds and steroids. The kinetic and chemical studies showed that the antibodies afforded rate accelerations up to a factor of 104 by means of an enamine mechanism in which imine formation was the rate-determining step. In light of our observations and the enzyme studies by other workers, we suggest that an enamine pathway could have been an early, viable KSI mechanism. Although this pathway is amenable to optimization for increased catalytic power, it appears that certain factors precluded its evolution in known KSI enzymes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Transporters for the biogenic amines dopamine, norepinephrine, epinephrine and serotonin are largely responsible for transmitter inactivation after release. They also serve as high-affinity targets for a number of clinically relevant psychoactive agents, including antidepressants, cocaine, and amphetamines. Despite their prominent role in neurotransmitter inactivation and drug responses, we lack a clear understanding of the permeation pathway or regulation mechanisms at the single transporter level. The resolution of radiotracer-based flux techniques limits the opportunities to dissect these problems. Here we combine patch-clamp recording techniques with microamperometry to record the transporter-mediated flux of norepinephrine across isolated membrane patches. These data reveal voltage-dependent norepinephrine flux that correlates temporally with antidepressant-sensitive transporter currents in the same patch. Furthermore, we resolve unitary flux events linked with bursts of transporter channel openings. These findings indicate that norepinephrine transporters are capable of transporting neurotransmitter across the membrane in discrete shots containing hundreds of molecules. Amperometry is used widely to study neurotransmitter distribution and kinetics in the nervous system and to detect transmitter release during vesicular exocytosis. Of interest regarding the present application is the use of amperometry on inside-out patches with synchronous recording of flux and current. Thus, our results further demonstrate a powerful method to assess transporter function and regulation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We noted previously that certain aminoglycoside antibiotics inhibit the binding of coatomer to Golgi membranes in vitro. The inhibition is mediated in part by two primary amino groups present at the 1 and 3 positions of the 2-deoxystreptamine moiety of the antibiotics. These two amines appear to mimic the ε-amino groups present in the two lysine residues of the KKXX motif that is known to bind coatomer. Here we report the effects of 1,3-cyclohexanebis(methylamine) (CBM) on secretion in vivo, a compound chosen for study because it contains primary amino groups that resemble those in 2-deoxystreptamine and it should penetrate lipid bilayers more readily than antibiotics. CBM inhibited coatomer binding to Golgi membranes in vitro and in vivo and inhibited secretion by intact cells. Despite depressed binding of coatomer in vivo, the Golgi complex retained its characteristic perinuclear location in the presence of CBM and did not fuse with the endoplasmic reticulum (ER). Transport from the ER to the Golgi was also not blocked by CBM. These data suggest that a full complement of coat protein I (COPI) on membranes is not critical for maintenance of Golgi integrity or for traffic from the ER to the Golgi but is necessary for transport through the Golgi to the plasma membrane.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An analysis of the x-ray structure of homodimeric avian farnesyl diphosphate synthase (geranyltransferase, EC 2.5.1.10) coupled with information about conserved amino acids obtained from a sequence alignment of 35 isoprenyl diphosphate synthases that synthesize farnesyl (C15), geranylgeranyl (C20), and higher chain length isoprenoid diphosphates suggested that the side chains of residues corresponding to F112 and F113 in the avian enzyme were important for determining the ultimate length of the hydrocarbon chains. This hypothesis was supported by site-directed mutagenesis to transform wild-type avian farnesyl diphosphate synthase (FPS) into synthases capable of producing geranylgeranyl diphosphate (F112A), geranylfarnesyl (C25) diphosphate (F113S), and longer chain prenyl diphosphates (F112A/F113S). An x-ray analysis of the structure of the F112A/F113S mutant in the apo state and with allylic substrates bound produced the strongest evidence that these mutations caused the observed change in product specificity by directly altering the size of the binding pocket for the growing isoprenoid chain in the active site of the enzyme. The proposed binding pocket in the apo mutant structure was increased in depth by 5.8 Å as compared with that for the wild-type enzyme. Allylic diphosphates were observed in the holo structures, bound through magnesium ions to the aspartates of the first of two conserved aspartate-rich sequences (D117–D121), with the hydrocarbon tails of all the ligands growing down the hydrophobic pocket toward the mutation site. A model was constructed to show how the growth of a long chain prenyl product may proceed by creation of a hydrophobic passageway from the FPS active site to the outside surface of the enzyme.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The crystal structure of the complex of a catalytic antibody with its cationic hapten at 1.9-Å resolution demonstrates that the hapten amidinium group is stabilized through an ionic pair interaction with the carboxylate of a combining-site residue. The location of this carboxylate allows it to act as a general base in an allylic rearrangement. When compared with structures of other antibody complexes in which the positive moiety of the hapten is stabilized mostly by cation–π interactions, this structure shows that the amidinium moiety is a useful candidate to elicit a carboxylate in an antibody combining site at a predetermined location with respect to the hapten. More generally, this structure highlights the advantage of a bidentate hapten for the programmed positioning of a chemically reactive residue in an antibody through charge complementarity to the hapten.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Experiments were performed to confirm that the aldimine bond formation is a spontaneous reaction, because attempts to find an enzyme catalyzing the last decisive step in betaxanthin biosynthesis, the aldimine formation, failed. Feeding different amino acids to betalain-forming hairy root cultures of yellow beet (Beta vulgaris L. subsp. vulgaris “Golden Beet”) showed that all amino acids (S- and R-forms) led to the corresponding betaxanthins. We observed neither an amino acid specificity nor a stereoselectivity in this process. In addition, increasing the endogenous phenylalanine (Phe) level by feeding the Phe ammonia-lyase inhibitor 2-aminoindan 2-phosphonic acid yielded the Phe-derived betaxanthin. Feeding amino acids or 2-aminoindan 2-phosphonic acid to hypocotyls of fodder beet (B. vulgaris L. subsp. vulgaris “Altamo”) plants led to the same results. Furthermore, feeding cyclo-3-(3,4-dihydroxyphenyl)-alanine (cyclo-Dopa) to these hypocotyls resulted in betanidin formation, indicating that the decisive step in betacyanin formation proceeds spontaneously. Finally, feeding betalamic acid to broad bean (Vicia faba L.) seedlings, which are known to accumulate high levels of Dopa but do not synthesize betaxanthins, resulted in the formation of dopaxanthin. These results indicate that the condensation of betalamic acid with amino acids (possibly including cyclo-Dopa or amines) in planta is a spontaneous, not an enzyme-catalyzed reaction.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Delta 5-3-Ketosteroid isomerase (EC 5.3.3.1) promotes an allylic rearrangement involving intramolecular proton transfer via a dienolic intermediate. This enzyme enhances the catalytic rate by a factor of 10(10). Two residues, Tyr-14, the general acid that polarizes the steroid 3-carbonyl group and facilitates enolization, and Asp-38 the general base that abstracts and transfers the 4 beta-proton to the 6 beta-position, contribute 10(4.7) and 10(5.6) to the rate increase, respectively. A major mechanistic enigma is the huge disparity between the pKa values of the catalytic groups and their targets. Upon binding of an analog of the dienolate intermediate to isomerase, proton NMR detects a highly deshielded resonance at 18.15 ppm in proximity to aromatic protons, and with a 3-fold preference for protium over deuterium (fractionation factor, phi = 0.34), consistent with formation of a short, strong (low-barrier) hydrogen bond to Tyr-14. The strength of this hydrogen bond is estimated to be at least 7.1 kcal/mol. This bond is relatively inaccessible to bulk solvent and is pH insensitive. Low-barrier hydrogen bonding of Tyr-14 to the intermediate, in conjunction with the previously demonstrated tunneling contribution to the proton transfer by Asp-38, provide a plausible and quantitative explanation for the high catalytic power of this isomerase.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cyclic terpenes and terpenoids are found throughout nature. They comprise an especially important class of compounds from plants that mediate plant- environment interactions, and they serve as pharmaceutical agents with antimicrobial and anti-tumor activities. Molecular comparisons of several terpene cyclases, the key enzymes responsible for the multistep cyclization of C10, C15, and C20 allylic diphosphate substrates, have revealed a striking level of sequence similarity and conservation of exon position and size within the genes. Functional domains responsible for a terminal enzymatic step were identified by swapping regions approximating exons between a Nicotiana tabacum 5-epi-aristolochene synthase (TEAS) gene and a Hyoscyamus muticus vetispiradiene synthase (HVS) gene and by characterization of the resulting chimeric enzymes expressed in bacteria. While exon 4 of the TEAS gene conferred specificity for the predominant reaction products of the tobacco enzyme, exon 6 of the HVS gene conferred specificity for the predominant reaction products of the Hyoscyamus enzyme. Combining these two functional domains of the TEAS and HVS genes resulted in a novel enzyme capable of synthesizing reaction products reflective of both parent enzymes. The relative ratio of the TEAS and HVS reaction products was also influenced by the source of exon 5 present in the new chimeric enzymes. The association of catalytic activities with conserved but separate exonic domains suggests a general means for generating additional novel terpene cyclases.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Chemical modification of proteins is a common theme in their regulation. Nitrosylation of protein sulfhydryl groups has been shown to confer nitric oxide (NO)-like biological activities and to regulate protein functions. Several other nucleophilic side chains -- including those with hydroxyls, amines, and aromatic carbons -- are also potentially susceptible to nitrosative attack. Therefore, we examined the reactivity and functional consequences of nitros(yl)ation at a variety of nucleophilic centers in biological molecules. Chemical analysis and spectroscopic studies show that nitrosation reactions are sustained at sulfur, oxygen, nitrogen, and aromatic carbon centers, with thiols being the most reactive functionality. The exemplary protein, BSA, in the presence of a 1-, 20-, 100-, or 200-fold excess of nitrosating equivalents removes 0.6 +/- 0.2, 3.2 +/- 0.4, 18 +/- 4, and 38 +/- 10, respectively, moles of NO equivalents per mole of BSA from the reaction medium; spectroscopic evidence shows the proportionate formation of a polynitrosylated protein. Analogous reaction of tissue-type plasminogen activator yields comparable NO protein stoichiometries. Disruption of protein tertiary structure by reduction results in the preferential nitrosylation of up to 20 thus-exposed thiol groups. The polynitrosylated proteins exhibit antiplatelet and vasodilator activity that increases with the degree of nitrosation, but S-nitroso derivatives show the greatest NO-related bioactivity. Studies on enzymatic activity of tissue-type plasminogen activator show that polynitrosylation may lead to attenuated function. Moreover, the reactivity of tyrosine residues in proteins raises the possibility that NO could disrupt processes regulated by phosphorylation. Polynitrosylated proteins were found in reaction mixtures containing interferon-gamma/lipopolysaccharide-stimulated macrophages and in tracheal secretions of subjects treated with NO gas, thus suggesting their physiological relevance. In conclusion, multiple sites on proteins are susceptible to attack by nitrogen oxides. Thiol groups are preferentially modified, supporting the notion that S-nitrosylation can serve to regulate protein function. Nitrosation reactions sustained at additional nucleophilic centers may have (patho)physiological significance and suggest a facile route by which abundant NO bioactivity can be delivered to a biological system, with specificity dictated by protein substrate.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Several epidemiologic studies indicate that NAT2-related slow N-acetylation increases bladder cancer risk among workers exposed to aromatic amines, presumably because N-acetylation is important for the detoxification of these compounds. Previously, we showed that NAT2 polymorphisms did not influence bladder cancer risk among Chinese workers exposed exclusively to benzidine (BZ), suggesting that NAT2 N-acetylation is not a critical detoxifying pathway for this aromatic amine. To evaluate the biologic plausibility of this finding, we carried out a cross-sectional study of 33 workers exposed to BZ and 15 unexposed controls in Ahmedabad, India, to evaluate the presence of BZ-related DNA adducts in exfoliated urothelial cells, the excretion pattern of BZ metabolites, and the impact of NAT2 activity on these outcomes. Four DNA adducts were significantly elevated in exposed workers compared to controls; of these, the predominant adduct cochromatographed with a synthetic N-(3'- phosphodeoxyguanosin-8-yl)-N'-acetylbenzidine standard and was the only adduct that was significantly associated with total BZ urinary metabolites (r = 0.68, P < 0.0001). To our knowledge this is the first report to show that BZ forms DNA adducts in exfoliated urothelial cells of exposed humans and that the predominant adduct formed is N-acetylated, supporting the concept that monofunctional acetylation is an activation, rather than a detoxification, step for BZ. However, because almost all BZ-related metabolites measured in the urine of exposed workers were acetylated among slow, as well as rapid, acetylators (mean +/- SD 95 +/- 1.9% vs. 97 +/- 1.6%, respectively) and NAT2 activity did not affect the levels of any DNA adduct measured, it is unlikely that interindividual variation in NAT2 function is relevant for BZ-associated bladder carcinogenesis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Previous research indicates that norepinephrine and dopamine stimulate release of luteinizing hormone (LH)-releasing hormone (LHRH), which then reaches the adenohypophysis via the hypophyseal portal vessels to release LH. Norepinephrine exerts its effect via alpha 1-adrenergic receptors, which stimulate the release of nitric oxide (NO) from nitricoxidergic (NOergic) neurons in the medial basal hypothalamus (MBH). The NO activates guanylate cyclase and cyclooxygenase, thereby inducing release of LHRH into the hypophyseal portal vessels. We tested the hypothesis that these two catecholamines modulate NO release by local feedback. MBH explants were incubated in the presence of sodium nitroprusside (NP), a releaser of NO, and the effect on release of catecholamines was determined. NP inhibited release of norepinephrine. Basal release was increased by incubation of the tissue with the NO scavenger hemoglobin (20 micrograms/ml). Hemoglobin also blocked the inhibitory effect of NP. In the presence of high-potassium (40 mM) medium to depolarize cell membranes, norepinephrine release was increased by a factor of 3, and this was significantly inhibited by NP. Hemoglobin again produced a further increase in norepinephrine release and also blocked the action of NP. When constitutive NO synthase was inhibited by the competitive inhibitor NG-monomethyl-L-arginine (NMMA) at 300 microM, basal release of norepinephrine was increased, as was potassium-evoked release, and this was associated in the latter instance with a decrease in tissue concentration, presumably because synthesis did not keep up with the increased release in the presence of NMMA. The results were very similar with dopamine, except that reduction of potassium-evoked dopamine release by NP was not significant. However, the increase following incubation with hemoglobin was significant, and hemoglobin, when incubated with NP, caused a significant elevation in dopamine release above that with NP alone. In this case, NP increased tissue concentration of dopamine along with inhibiting release, suggesting that synthesis continued, thereby raising the tissue concentration in the face of diminished release. When the tissue was incubated with NP plus hemoglobin, which caused an increase in release above that obtained with NP alone, the tissue concentration decreased significantly compared with that in the absence of hemoglobin, indicating that, with increased release, release exceeded synthesis, causing a fall in tissue concentration. When NO synthase was blocked by NMMA, the release of dopamine, under either basal or potassium-evoked conditions, was increased. Again, in the latter instance the tissue concentration declined significantly, presumably because synthesis did not match release. Therefore, the results were very similar with both catecholamines and indicate that NO acts to suppress release of both amines. Since both catecholamines activate the release of LHRH, the inhibition of their release by NO serves as an ultra-short-loop negative feedback by which NO inhibits the release of the catecholamines, thereby reducing the activation of the NOergic neurons and decreasing the release of LHRH. This may be an important means for terminating the pulses of release of LHRH, which generate the pulsatile release of LH that stimulates gonadal function in both male and female mammals.