31 resultados para ALLERGIC INFLAMMATION
em National Center for Biotechnology Information - NCBI
Resumo:
IL-18 is a proinflammatory cytokine that plays an important role in natural killer cell activation and T helper 1 (Th1) cell responses. Mast cells and basophils are major inducers and effectors of allergic inflammation. Here we show that basophils and mast cells derived by culture of bone marrow cells with IL-3 for 10 days express IL-18Rα chain and that basophils produce large amounts of IL-4 and IL-13 in response to stimulation with IL-3 and IL-18. Injection of IL-12 and IL-18 inhibits IgE production in helminth-infected wild-type mice and abolishes the capacity of their basophils to produce IL-4 and IL-13 in response to stimulation either with IL-3 and IL-18 or with FcɛR cross-linkage. By contrast, this combination of cytokines actually increases IgE levels in helminth-infected IFN-γ−/− mice and enhances IL-4 and IL-13 production by their basophils. Furthermore, injection of IL-18 alone enhances basophil production of IL-4 and histamine both in wild-type and IFN-γ−/− mice. Thus, IL-18 has the potential to stimulate basophils but, when given with IL-12, exhibits an antiallergic action in vivo.
Resumo:
Leukocyte interactions with vascular endothelium during inflammation occur through discrete steps involving selectin-mediated leukocyte rolling and subsequent firm adhesion mediated by members of the integrin and Ig families of adhesion molecules. To identify functional synergy between selectin and Ig family members, mice deficient in both L-selectin and intercellular adhesion molecule 1 (ICAM-1) were generated. Leukocyte rolling velocities in cremaster muscle venules were increased significantly in ICAM-1-deficient mice during both trauma- and tumor necrosis factor α-induced inflammation, but rolling leukocyte flux was not reduced. Elimination of ICAM-1 expression in L-selectin-deficient mice resulted in a sharp reduction in the flux of rolling leukocytes during tumor necrosis factor α-induced inflammation. The observed differences in leukocyte rolling behavior demonstrated that ICAM-1 expression was required for optimal P- and L-selectin-mediated rolling. Increased leukocyte rolling velocities presumably translated into decreased tissue emigration because circulating neutrophil, monocyte, and lymphocyte numbers were increased markedly in L-selectin/ICAM-1-deficient mice. Furthermore, neutrophil emigration during acute peritonitis was reduced by 80% in the double-deficient mice compared with either L-selectin or ICAM-1-deficient mice. Thus, members of the selectin and Ig families function synergistically to mediate optimal leukocyte rolling in vivo, which is essential for the generation of effective inflammatory responses.
Resumo:
T helper (Th) cells can be categorized according to their cytokine expression. The differential induction of Th cells expressing Th1 and/or Th2 cytokines is key to the regulation of both protective and pathological immune responses. Cytokines are expressed transiently and there is a lack of stably expressed surface molecules, significant for functionally different types of Th cells. Such molecules are of utmost importance for the analysis and selective functional modulation of Th subsets and will provide new therapeutic strategies for the treatment of allergic or autoimmune diseases. To this end, we have identified potential target genes preferentially expressed in Th2 cells, expressing interleukin (IL)-4, IL-5, and/or IL-10, but not interferon-γ. One such gene, T1/ST2, is expressed stably on both Th2 clones and Th2-polarized cells activated in vivo or in vitro. T1/ST2 expression is independent of induction by IL-4, IL-5, or IL-10. T1/ST2 plays a critical role in Th2 effector function. Administration of either a mAb against T1/ST2 or recombinant T1/ST2 fusion protein attenuates eosinophilic inflammation of the airways and suppresses IL-4 and IL-5 production in vivo following adoptive transfer of Th2 cells.
Resumo:
A myelin basic protein (MBP)-specific BALB/c T helper 1 (Th1) clone was transduced with cDNA for murine latent transforming growth factor-β1 (TGF-β1) by coculture with fibroblasts producing a genetically engineered retrovirus. When SJL x BALB/c F1 mice, immunized 12–15 days earlier with proteolipid protein in complete Freund’s adjuvant, were injected with 3 × 106 cells from MBP-activated untransduced cloned Th1 cells, the severity of experimental allergic encephalomyelitis (EAE) was slightly increased. In contrast, MBP-activated (but not resting) latent TGF-β1-transduced T cells significantly delayed and ameliorated EAE development. This protective effect was negated by simultaneously injected anti-TGF-β1. The transduced cells secreted 2–4 ng/ml of latent TGF-β1 into their culture medium, whereas control cells secreted barely detectable amounts. mRNA profiles for tumor necrosis factor, lymphotoxin, and interferon-γ were similar before and after transduction; interleukin-4 and -10 were absent. TGF-β1-transduced and antigen-activated BALB/c Th1 clones, specific for hemocyanin or ovalbumin, did not ameliorate EAE. Spinal cords from mice, taken 12 days after receiving TGF-β1-transduced, antigen-activated cells, contained detectable amounts of TGF-β1 cDNA. We conclude that latent TGF-β1-transduced, self-reactive T cell clones may be useful in the therapy of autoimmune diseases.
Resumo:
The enzymes cyclooxygenase-1 and cyclooxygenase-2 (COX-1 and COX-2) catalyze the conversion of arachidonic acid to prostaglandin (PG) H2, the precursor of PGs and thromboxane. These lipid mediators play important roles in inflammation and pain and in normal physiological functions. While there are abundant data indicating that the inducible isoform, COX-2, is important in inflammation and pain, the constitutively expressed isoform, COX-1, has also been suggested to play a role in inflammatory processes. To address the latter question pharmacologically, we used a highly selective COX-1 inhibitor, SC-560 (COX-1 IC50 = 0.009 μM; COX-2 IC50 = 6.3 μM). SC-560 inhibited COX-1-derived platelet thromboxane B2, gastric PGE2, and dermal PGE2 production, indicating that it was orally active, but did not inhibit COX-2-derived PGs in the lipopolysaccharide-induced rat air pouch. Therapeutic or prophylactic administration of SC-560 in the rat carrageenan footpad model did not affect acute inflammation or hyperalgesia at doses that markedly inhibited in vivo COX-1 activity. By contrast, celecoxib, a selective COX-2 inhibitor, was anti-inflammatory and analgesic in this model. Paradoxically, both SC-560 and celecoxib reduced paw PGs to equivalent levels. Increased levels of PGs were found in the cerebrospinal fluid after carrageenan injection and were markedly reduced by celecoxib, but were not affected by SC-560. These results suggest that, in addition to the role of peripherally produced PGs, there is a critical, centrally mediated neurological component to inflammatory pain that is mediated at least in part by COX-2.
Resumo:
Neutrophils are important effector cells in immunity to microorganisms, particularly bacteria. Here, we show that the process of neutrophil apoptosis is delayed in several inflammatory diseases, suggesting that this phenomenon may represent a general feature contributing to the development of neutrophilia, and, therefore, in many cases to host defense against infection. The delay of neutrophil apoptosis was associated with markedly reduced levels of Bax, a pro-apoptotic member of the Bcl-2 family. Such Bax-deficient cells were also observed upon stimulation of normal neutrophils with cytokines present at sites of neutrophilic inflammation, such as granulocyte and granulocyte–macrophage colony-stimulating factors, in vitro. Moreover, Bax-deficient neutrophils generated by using Bax antisense oligodeoxynucleotides demonstrated delayed apoptosis, providing direct evidence for a role of Bax as a pro-apoptotic molecule in these cells. Interestingly, the Bax gene was reexpressed in Bax-deficient neutrophils under conditions of cytokine withdrawal. Thus, both granulocyte expansion and the resolution of inflammation appear to be regulated by the expression of the Bax gene in neutrophils.
Resumo:
The human 15-lipoxygenase (15-LO) gene was transfected into rat kidneys in vivo via intra-renal arterial injection. Three days later, acute (passive) or accelerated forms of antiglomerular basement membrane antibody-mediated glomerulonephritis were induced in transfected and nontransfected or sham-transfected controls. Studies of glomerular functions (filtration and protein excretion) and ex vivo glomerular leukotriene B4 biosynthesis at 3 hr, and up to 4 days, after induction of nephritis revealed preservation or normalization of these parameters in transfected kidneys that expressed human 15-LO mRNA and mature protein, but not in contralateral control kidneys or sham-transfected animals. The results provide in vivo-derived data supporting a direct anti-inflammatory role for 15-LO during immune-mediated tissue injury.
Resumo:
The only treatment of patients with acute ischemic stroke is thrombolytic therapy, which benefits only a fraction of stroke patients. Both human and experimental studies indicate that ischemic stroke involves secondary inflammation that significantly contributes to the outcome after ischemic insult. Minocycline is a semisynthetic second-generation tetracycline that exerts antiinflammatory effects that are completely separate from its antimicrobial action. Because tetracycline treatment is clinically well tolerated, we investigated whether minocycline protects against focal brain ischemia with a wide therapeutic window. Using a rat model of transient middle cerebral artery occlusion, we show that daily treatment with minocycline reduces cortical infarction volume by 76 ± 22% when the treatment is started 12 h before ischemia and by 63 ± 35% when started even 4 h after the onset of ischemia. The treatment inhibits morphological activation of microglia in the area adjacent to the infarction, inhibits induction of IL-1β-converting enzyme, and reduces cyclooxygenase-2 expression and prostaglandin E2 production. Minocycline had no effect on astrogliosis or spreading depression, a wave of ionic transients thought to contribute to enlargement of cortical infarction. Treatment with minocycline may act directly on brain cells, because cultured primary neurons were also salvaged from glutamate toxicity. Minocycline may represent a prototype of an antiinflammatory compound that provides protection against ischemic stroke and has a clinically relevant therapeutic window.
Resumo:
In this study we investigated, using intravital microscopy, how neutrophil extravasation across mouse mesenteric postcapillary venules is inhibited by the glucocorticoid-regulated protein lipocortin (LC; also termed annexin) 1. Intraperitoneal injection of 1 mg of zymosan into mice induced neutrophil rolling on the activated mesenteric endothelium followed by adhesion (maximal at 2 hr: 5–6 cells per 100-μm of vessel length) and emigration (maximal at 4 hr: 8–10 cells per high-powered field). Treatment of mice with human recombinant LC1 (2 mg/kg s.c.) or its mimetic peptide Ac2–26 (13 mg/kg s.c.) did not modify cell rolling but markedly reduced (≥50%) the degree of neutrophil adhesion and emigration (P < 0.05). Intravenous treatment with peptide Ac2–26 (13 mg/kg) or recombinant human LC1 (0.7–2 mg/kg) promoted detachment of neutrophils adherent to the endothelium 2 hr after zymosan administration, with adherent cells detaching within 4.12 ± 0.75 min and 2.36 ± 0.31 min, respectively (n = 20–25 cells). Recruitment of newly adherent cells to the endothelium was unaffected. The structurally related protein LC5 was inactive in this assay, whereas a chimeric molecule constructed from the N terminus of LC1 (49 aa) attached to the core region of LC5 produced cell detachment with kinetics similar to LC1. Removal of adherent neutrophils from activated postcapillary endothelium is a novel pharmacological action, and it is at this site where LC1 and its mimetics operate to down-regulate this aspect of the host inflammatory response.
Resumo:
Thioredoxin, a ubiquitous 12-kDa regulatory disulfide protein, was found to reduce disulfide bonds of allergens (convert S—S to 2 SH) and thereby mitigate the allergenicity of commercial wheat preparations. Allergenic strength was determined by skin tests with a canine model for food allergy. Statistically significant mitigation was observed with 15 of 16 wheat-sensitive animals. The allergenicity of the protein fractions extracted from wheat flour with the indicated solvent was also assessed: the gliadins (ethanol) were the strongest allergens, followed by glutenins (acetic acid), albumins (water), and globulins (salt water). Of the gliadins, the α and β fractions were most potent, followed by the γ and ω types. Thioredoxin mitigated the allergenicity associated with the major protein fractions—i.e, the gliadins (including the α, β, and γ types) and the glutenins—but gave less consistent results with the minor fractions, the albumins and globulins. In all cases, mitigation was specific to thioredoxin that had been reduced either enzymically by NADPH and NADP–thioredoxin reductase or chemically by dithiothreitol; reduced glutathione was without significant effect. As in previous studies, thioredoxin was particularly effective in the reduction of intramolecular (intrachain) disulfide bonds. The present results demonstrate that the reduction of these disulfide bonds is accompanied by a statistically significant decrease in allergenicity of the active proteins. This decrease occurs alongside the changes identified previously—i.e., increased susceptibility to proteolysis and heat, and altered biochemical activity. The findings open the door to the testing of the thioredoxin system in the production of hypoallergenic, more-digestible foods.
Resumo:
Suppression of oxidative injury by viral-mediated transfer of the human catalase gene was tested in the optic nerves of animals with experimental allergic encephalomyelitis (EAE). EAE is an inflammatory autoimmune disorder of primary central nervous system demyelination that has been frequently used as an animal model for the human disease multiple sclerosis (MS). The optic nerve is a frequent site of involvement common to both EAE and MS. Recombinant adeno-associated virus containing the human gene for catalase was injected over the right optic nerve heads of SJL/J mice that were simultaneously sensitized for EAE. After 1 month, cell-specific catalase activity, evaluated by quantitation of catalase immunogold, was increased approximately 2-fold each in endothelia, oligodendroglia, astrocytes, and axons of the optic nerve. Effects of catalase on the histologic lesions of EAE were measured by computerized analysis of the myelin sheath area (for demyelination), optic disc area (for optic nerve head swelling), extent of the cellular infiltrate, extravasated serum albumin labeled by immunogold (for blood–brain barrier disruption), and in vivo H2O2 reaction product. Relative to control, contralateral optic nerves injected with the recombinant virus without a therapeutic gene, catalase gene inoculation reduced demyelination by 38%, optic nerve head swelling by 29%, cellular infiltration by 34%, disruption of the blood–brain barrier by 64%, and in vivo levels of H2O2 by 61%. Because the efficacy of potential treatments for MS are usually initially tested in the EAE animal model, this study suggests that catalase gene delivery by using viral vectors may be a therapeutic strategy for suppression of MS.
Resumo:
The transcription factor NF-κB is a pivotal regulator of inflammatory responses. While the activation of NF-κB in the arthritic joint has been associated with rheumatoid arthritis (RA), its significance is poorly understood. Here, we examine the role of NF-κB in animal models of RA. We demonstrate that in vitro, NF-κB controlled expression of numerous inflammatory molecules in synoviocytes and protected cells against tumor necrosis factor α (TNFα) and Fas ligand (FasL) cytotoxicity. Similar to that observed in human RA, NF-κB was found to be activated in the synovium of rats with streptococcal cell wall (SCW)-induced arthritis. In vivo suppression of NF-κB by either proteasomal inhibitors or intraarticular adenoviral gene transfer of super-repressor IκBα profoundly enhanced apoptosis in the synovium of rats with SCW- and pristane-induced arthritis. This indicated that the activation of NF-κB protected the cells in the synovium against apoptosis and thus provided the potential link between inflammation and hyperplasia. Intraarticular administration of NF-kB decoys prevented the recurrence of SCW arthritis in treated joints. Unexpectedly, the severity of arthritis also was inhibited significantly in the contralateral, untreated joints, indicating beneficial systemic effects of local suppression of NF-κB. These results establish a mechanism regulating apoptosis in the arthritic joint and indicate the feasibility of therapeutic approaches to RA based on the specific suppression of NF-κB.
Resumo:
Engagement of the mast cell high-affinity receptor for immunoglobulin E (IgE), FcɛRI, induces tyrosine phosphorylation of Syk, a non-receptor tyrosine kinase, that has been demonstrated as critical for degranulation. Herein we describe a synthetic compound, ER-27319, as a potent and selective inhibitor of antigen or anti-IgE-mediated degranulation of rodent and human mast cells. ER-27319 affected neither Lyn kinase activity nor the antigen-induced phosphorylation of the FcɛRI but did effectively inhibit the tyrosine phosphorylation of Syk and thus its activity. As a consequence, tyrosine phosphorylation of phospholipase C-γ1, generation of inositol phosphates, release of arachidonic acid, and secretion of histamine and tumor necrosis factor α were also inhibited. ER-27319 did not inhibit the anti-CD3-induced tyrosine phosphorylation of phospholipase C-γ1 in Jurkat T cells, demonstrating a specificity for Syk-induced signals. In contrast the tyrosine phosphorylation and activation of Syk, induced by in vitro incubation with the phosphorylated immunoreceptor tyrosine-based activation motif (ITAM) of FcɛRI γ subunit or by antigen activation of RBL-2H3 cells, was specifically inhibited by ER-27319. However, when ER-27319 was added to immunoprecipitated Syk, derived from activated cells, no effect was seen on Syk activity. ER-27319 did not inhibit the tyrosine phosphorylation of Syk induced by activation in the presence of Igβ ITAM or the anti-IgM-induced phosphorylation of Syk in human peripheral B cells. Therefore, ER-27319 selectively interferes with the FcɛRI γ phospho-ITAM activation of Syk in vitro and in intact cells. These results confirm the importance of Syk in FcɛRI-mediated responses in mast cells and demonstrate the mast cell selectivity and therapeutic potential of ER-27319 in the treatment of allergic disease.
Resumo:
We have investigated whether exposure to Gram-negative bacterial endotoxin in early neonatal life can alter neuroendocrine and immune regulation in adult animals. Exposure of neonatal rats to a low dose of endotoxin resulted in long-term changes in hypothalamic–pituitary–adrenal (HPA) axis activity, with elevated mean plasma corticosterone concentrations that resulted from increased corticosterone pulse frequency and pulse amplitude. In addition to this marked effect on the development of the HPA axis, neonatal endotoxin exposure had long-lasting effects on immune regulation, including increased sensitivity of lymphocytes to stress-induced suppression of proliferation and a remarkable protection from adjuvant-induced arthritis. These findings demonstrate a potent and long-term effect of neonatal exposure to inflammatory stimuli that can program major changes in the development of both neuroendocrine and immunological regulatory mechanisms.
Resumo:
The molecular mechanisms of pulmonary fibrosis are poorly understood. We have used oligonucleotide arrays to analyze the gene expression programs that underlie pulmonary fibrosis in response to bleomycin, a drug that causes lung inflammation and fibrosis, in two strains of susceptible mice (129 and C57BL/6). We then compared the gene expression patterns in these mice with 129 mice carrying a null mutation in the epithelial-restricted integrin β6 subunit (β6−/−), which develop inflammation but are protected from pulmonary fibrosis. Cluster analysis identified two distinct groups of genes involved in the inflammatory and fibrotic responses. Analysis of gene expression at multiple time points after bleomycin administration revealed sequential induction of subsets of genes that characterize each response. The availability of this comprehensive data set should accelerate the development of more effective strategies for intervention at the various stages in the development of fibrotic diseases of the lungs and other organs.