4 resultados para AII125-8-13

em National Center for Biotechnology Information - NCBI


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The GTPase dynamin I and the inositol 5-phosphatase synaptojanin are nerve terminal proteins implicated in synaptic vesicle recycling. Both proteins contain COOH-terminal proline-rich domains that can interact with a variety of Src homology 3 (SH3) domains. A major physiological binding partner for dynamin I and synaptojanin in the nervous system is amphiphysin I, an SH3 domain-containing protein also concentrated in nerve terminals. We have used the proline-rich tail of synaptojanin to screen a rat brain library by the two-hybrid method to identify additional interacting partners of synaptojanin. Three related proteins containing SH3 domains that are closely related to the SH3 domains of Grb2 were isolated: SH3p4, SH3p8, and SH3p13. Further biochemical studies demonstrated that the SH3p4/8/13 proteins bind to both synaptojanin and dynamin I. The SH3p4/8/13 transcripts are differentially expressed in tissues: SH3p4 mRNA was detected only in brain, SH3p13 mRNA was present in brain and testis, and the SH3p8 transcript was detected at similar levels in multiple tissues. Members of the SH3p4/8/13 protein family were found to be concentrated in nerve terminals, and pools of synaptojanin and dynamin I were coprecipitated from brain extracts with antibodies recognizing SH3p4/8/13. These findings underscore the important role of SH3-mediated interactions in synaptic vesicle recycling.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We designed a host–guest fusion peptide system, which is completely soluble in water and has a high affinity for biological and lipid model membranes. The guest sequences are those of the fusion peptides of influenza hemagglutinin, which are solubilized by a highly charged unstructured C-terminal host sequence. These peptides partition to the surface of negatively charged liposomes or erythrocytes and elicit membrane fusion or hemolysis. They undergo a conformational change from random coil to an obliquely inserted (≈33° from the surface) α-helix on binding to model membranes. Partition coefficients for membrane insertion were measured for influenza fusion peptides of increasing lengths (n = 8, 13, 16, and 20). The hydrophobic contribution to the free energy of binding of the 20-residue fusion peptide at pH 5.0 is −7.6 kcal/mol (1 cal = 4.18 J). This energy is sufficient to stabilize a “stalk” intermediate if a typical number of fusion peptides assemble at the site of membrane fusion. The fusion activity of the fusion peptides increases with each increment in length, and this increase strictly correlates with the hydrophobic binding energy and the angle of insertion.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Gephyrin is essential for both the postsynaptic localization of inhibitory neurotransmitter receptors in the central nervous system and the biosynthesis of the molybdenum cofactor (Moco) in different peripheral organs. Several alternatively spliced gephyrin transcripts have been identified in rat brain that differ in their 5′ coding regions. Here, we describe gephyrin splice variants that are differentially expressed in non-neuronal tissues and different regions of the adult mouse brain. Analysis of the murine gephyrin gene indicates a highly mosaic organization, with eight of its 29 exons corresponding to the alternatively spliced regions identified by cDNA sequencing. The N- and C-terminal domains of gephyrin encoded by exons 3–7 and 16–29, respectively, display sequence similarities to bacterial, invertebrate, and plant proteins involved in Moco biosynthesis, whereas the central exons 8, 13, and 14 encode motifs that may mediate oligomerization and tubulin binding. Our data are consistent with gephyrin having evolved from a Moco biosynthetic protein by insertion of protein interaction sequences.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Heart tissue destruction in chronic Chagas disease cardiopathy (CCC) may be caused by autoimmune recognition of heart tissue by a mononuclear cell infiltrate decades after Trypanosoma cruzi infection. Indirect evidence suggests that there is antigenic crossreactivity between T. cruzi and heart tissue. As there is evidence for immune recognition of cardiac myosin in CCC, we searched for a putative myosin-crossreactive T. cruzi antigen. T. cruzi lysate immunoblots were probed with anti-cardiac myosin heavy chain IgG antibodies (AMA) affinity-purified from CCC or asymptomatic Chagas disease patient-seropositive sera. A 140/116-kDa doublet was predominantly recognized by AMA from CCC sera. Further, recombinant T. cruzi protein B13--whose native protein is also a 140- and 116-kDa double band--was identified by crossreactive AMA. Among 28 sera tested in a dot-blot assay, AMA from 100% of CCC sera but only 14% of the asymptomatic Chagas disease sera recognized B13 protein (P = 2.3 x 10(-6)). Sequence homology to B13 protein was found at positions 8-13 and 1442-1447 of human cardiac myosin heavy chain. Competitive ELISA assays that used the correspondent myosin synthetic peptides to inhibit serum antibody binding to B13 protein identified the heart-specific AAALDK (1442-1447) sequence of human cardiac myosin heavy chain and the homologous AAAGDK B13 sequence as the respective crossreactive epitopes. The recognition of a heart-specific T. cruzi crossreactive epitope, in strong association with the presence of chronic heart lesions, suggests the involvement of crossreactivity between cardiac myosin and B13 in the pathogenesis of CCC.