7 resultados para AII AMACRINE CELLS

em National Center for Biotechnology Information - NCBI


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The three largest known populations of amacrine cells in the rabbit retina were stained with fluorescent probes in whole mounts and counted at a series of retinal eccentricities. The retinas were counterstained using a fluorescent DNA-binding molecule and the total number of nuclei in the inner nuclear layer were counted in confocal sections. From the total number of inner nuclear layer cells and the known fraction of them occupied by amacrine cells, the fraction of amacrine cells made up by the stained populations could be calculated. Starburst cells made up 3%, indoleamine-accumulating cells made up 4%, and AII cells made up 11% of all amacrine cells. By referring four smaller populations of amacrine cells to the number of indoleamine-accumulating cells, they were estimated to make up 4% of all amacrine cells. Thus, 78% of all amacrine cells in the rabbit’s retina are known only from isolated examples, if at all. This proportion is similar in the retinas of the mouse, cat, and monkey. It is likely that a substantial fraction of the local circuit neurons present in other regions of the central nervous system are also invisible as populations to current techniques.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The membrane excitability of cholinergic (starburst) amacrine cells was studied in the rabbit retina during postnatal development. Whole-cell patch-clamp recordings were made from 110 displaced starburst cells in a thin retina] slice preparation of rabbits between postnatal days P1 and P56 old. We report that displaced starburst cells undergo a dramatic transition from spiking to nonspiking, caused by a loss of voltage-gated Na currents. This change in membrane excitability occurred just after eye opening (P10), such that all of the starburst cells tested before eye opening had conspicuous tetrodotoxin-sensitive Na currents and action potentials, but none tested after the first 3 postnatal weeks had detectable Na currents or spikes. Our results suggest that starburst cells use action potentials transiently during development and probably play a functional role in visual development. These cells then cease to spike as the retina matures, presumably consistent with their role in visual processing in the mature retina.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Exocytosis of transmitter at most synapses is a very fast process triggered by the entry of Ca2+ during an action potential. A reasonable expectation is that the fast step of exocytosis is followed by slow steps readying another vesicle for exocytosis but the identity and kinetics of these steps are presently unclear. By voltage clamping both pre- and postsynaptic neurons in an isolated pair of retinal amacrine cells, we have measured evoked synaptic currents and responses to single vesicles of transmitter (minis). From these currents, we have computed the rate of exocytosis during a sustained presynaptic depolarization. We show here that for these cells, release is consistent with a scheme of "fire and reload." Large Ca2+ influx causes the rapid release of a small number of vesicles, typically approximately 10 per presynaptic neuron, likely corresponding to those vesicles already docked. After this spike of exocytosis whose peak is 150 quanta per release site per s, continued Ca2+ influx sustains release at only 22 quanta per release site per s, probably rate-limited by the docking of fresh vesicles.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Rod signals in the mammalian retina are thought to reach ganglion cells over the circuit rod-->rod depolarizing bipolar cell-->AII amacrine cell-->cone bipolar cells-->ganglion cells. A possible alternative pathway involves gap junctions linking the rods and cones, the circuit being rod-->cone-->cone bipolar cells-->ganglion cells. It is not clear whether this second pathway indeed relays rod signals to ganglion cells. We studied signal flow in the isolated rabbit retina with a multielectrode array, which allows the activity of many identified ganglion cells to be observed simultaneously while the preparation is stimulated with light and/or exposed to drugs. When transmission between rods and rod depolarizing bipolar cells was blocked by the glutamate agonist 2-amino-4-phosphonobutyric acid (APB), rod input to all On-center and briskly responding Off-center ganglion cells was dramatically reduced as expected. Off responses persisted, however, in Off-center sluggish and On-Off direction-selective ganglion cells. Presumably these responses were generated by the alternative pathway involving rod-cone junctions. This APB-resistant pathway may carry the major rod input to Off-center sluggish and On-Off direction-selective ganglion cells.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

trkB is the high-affinity receptor for brain-derived neurotrophic factor (BDNF), a trophic molecule with demonstrated effects on the survival and differentiation of a wide variety of neuronal populations. In the mammalian retina, trkB is localized to both ganglion cells and numerous cells in the inner nuclear layer. Much information on the role of BDNF in neuronal development has been derived from the study of trkB- and BDNF-deficient mutant mice. This includes an attenuation of the numbers of cortical neurons immunopositive for the calcium-binding proteins, parvalbumin, and calbindin. Unfortunately, these mutant animals typically fail to survive for > 24-48 hr after birth. Since most retinal neuronal differentiation occurs postnatally, we have devised an alternative scheme to suppress the expression of trkB in the retina to examine the role of BDNF on the postnatal development of neurons of the inner retina. Neonatal rats were treated with intraocular injection of an antisense oligonucleotide (1-2 microliters of 10-100 microM solution) targeted to the trkB mRNA. Immunohistochemistry with a polyclonal antibody to trkB showed that the expression of trkB in retinal neurons was suppressed 48-72 hr following a single injection. Northern blot analysis demonstrated that antisense treatment had no effect on the level of trkB mRNA, even after multiple injections. This suggests an effect of trkB antisense treatment on protein translation, but not on RNA transcription. No alterations were observed in the thickness of retinal cellular or plexiform layers, suggesting that BDNF is not the sole survival factor for these neurons. There were, however, alterations in the patterns of immunostaining for parvalbumin, a marker for the narrow-field, bistratified AII amacrine cell-a central element of the rod (scotopic) pathway. This was evidenced by a decrease in both the number of immunostained somata (> 50%) and in the intensity of immunolabeling. However, the immunostaining pattern of calbindin was not affected. These studies suggest that the ligands for trkB have specific effects on the neurochemical phenotypic expression of inner retinal neurons and in the development of a well-defined retinal circuit.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

CB1, a cannabinoid receptor enriched in neuronal tissue, was found in high concentration in retinas of rhesus monkey, mouse, rat, chick, goldfish, and tiger salamander by using a subtype-specific polyclonal antibody. Immunolabeling was detected in the two synaptic layers of the retina, the inner and outer plexiform layers, of all six species examined. In the outer plexiform layer, CB1 was located in and/or on cone pedicles and rod spherules. Labeling was detected in some amacrine cells of all species and in the ganglion cells and ganglion cell axons of all species except fish. In addition, sparse labeling was found in the inner and/or outer segments of the photoreceptors of monkey, mouse, rat, and chick. Using GC/MS to detect possible endogenous cannabinoids, we found 3 nmol of 2-arachidonylglycerol per g of tissue, but no anandamide was detectable. Cannabinoid receptor agonists induced a dramatic reduction in the amplitude of voltage-gated L-type calcium channel currents in identified retinal bipolar cells. The presence and distribution of the CB1 receptor, the large amounts of 2-arachidonylglycerol found, and the effects of cannabinoids on calcium channel activity in bipolar cells suggest a substantive role for an endogenous cannabinoid signaling system in retinal physiology, and perhaps vision in general.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Neural connections in the adult central nervous system are highly precise. In the visual system, retinal ganglion cells send their axons to target neurons in the lateral geniculate nucleus (LGN) in such a way that axons originating from the two eyes terminate in adjacent but nonoverlapping eye-specific layers. During development, however, inputs from the two eyes are intermixed, and the adult pattern emerges gradually as axons from the two eyes sort out to form the layers. Experiments indicate that the sorting-out process, even though it occurs in utero in higher mammals and always before vision, requires retinal ganglion cell signaling; blocking retinal ganglion cell action potentials with tetrodotoxin prevents the formation of the layers. These action potentials are endogenously generated by the ganglion cells, which fire spontaneously and synchronously with each other, generating "waves" of activity that travel across the retina. Calcium imaging of the retina shows that the ganglion cells undergo correlated calcium bursting to generate the waves and that amacrine cells also participate in the correlated activity patterns. Physiological recordings from LGN neurons in vitro indicate that the quasiperiodic activity generated by the retinal ganglion cells is transmitted across the synapse between ganglion cells to drive target LGN neurons. These observations suggest that (i) a neural circuit within the immature retina is responsible for generating specific spatiotemporal patterns of neural activity; (ii) spontaneous activity generated in the retina is propagated across central synapses; and (iii) even before the photoreceptors are present, nerve cell function is essential for correct wiring of the visual system during early development. Since spontaneously generated activity is known to be present elsewhere in the developing CNS, this process of activity-dependent wiring could be used throughout the nervous system to help refine early sets of neural connections into their highly precise adult patterns.