33 resultados para AFL members

em National Center for Biotechnology Information - NCBI


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The cell cycle inhibitor p21/WAF1/Cip1 is expressed in many cell types and is regulated by p53-dependent and p53-independent mechanisms. p21 is an important regulator of hepatocyte cell cycle, differentiation, and liver development, but little is known about the regulation of its synthesis in hepatocytes. We report herein that the p21 gene is constitutively expressed in human hepatoma HepG2 cells. Deletion analysis of the p21 promoter showed that it contains a distal (positions −2,300/−210) and a proximal (positions −124 to −61) region that act synergistically to achieve high levels of constitutive expression. The proximal region that consists of multiple Sp1 binding sites is essential for constitutive p21 promoter activity in hepatocytes. This region also mediates the transcriptional activation of the p21 promoter by members of the Smad family of proteins, which play important role in the transduction of extracellular signals such as transforming growth factor β, activin, etc. Constitutive expression of p21 was severely reduced by a C-terminally truncated form of Smad4 that was shown previously to block signaling through Smads. Smad3/4 and to a much lesser extent Smad2/4 caused high levels of transcriptional activation of the p21 promoter. Transactivation was compromised by N- or C-terminally truncated forms of Smad3. By using Gal4-Sp1 fusion proteins, we show that Smad proteins can activate gene transcription via functional interactions with the ubiquitous factor Sp1. These data demonstrate that Smad proteins and Sp1 participate in the constitutive or inducible expression of the p21 gene in hepatic cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Distant relatives of major histocompatibility complex (MHC) class I molecules, human MICA and MICB, function as stress-induced antigens that are broadly recognized by intestinal epithelial γδ T cells. They may thus play a central role in the immune surveillance of damaged, infected, or otherwise stressed intestinal epithelial cells. However, the generality of this system in evolution and the mode of recognition of MICA and MICB are undefined. Analysis of cDNA sequences from various primate species defined translation products that are homologous to MICA and MICB. All of the MIC polypeptides have common characteristics, although they are extraordinarily diverse. The most notable alterations are several deletions and frequent amino acid substitutions in the putative α-helical regions of the α1α2 domains. However, the primate MIC molecules were expressed on the surfaces of normal and transfected cells. Moreover, despite their sharing of relatively few identical amino acids in potentially accessible regions of their α1α2 domains, they were recognized by diverse human intestinal epithelial γδ T cells that are restricted by MICA and MICB. Thus, MIC molecules represent a family of MHC proteins that are structurally diverse yet appear to be functionally conserved. The promiscuous mode of γδ T cell recognition of these antigens may be explained by their sharing of a single conserved interaction site.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The yeast Saccharomyces cerevisiae contains three proteins (Kap104p, Pse1p, and Kap123p) that share similarity to the 95-kDa β subunit of the nuclear transport factor importin (also termed karyopherin and encoded by KAP95/RSL1 in yeast). Proteins that contain nuclear localization sequences are recognized in the cytoplasm and delivered to the nucleus by the heterodimeric importin complex. A second importin-related protein, transportin, delivers a subset of heterogeneous nuclear ribonucleoproteins (hnRNPs) to the nucleoplasm. We now show that in contrast to loss of importin β (Kap95p/Rsl1p) and transportin (Kap104p), conditional loss of Pse1p in a strain lacking Kap123p results in a specific block of mRNA export from the nucleus. Overexpression of Sxm1p, a protein related to Cse1p in yeast and to the human cellular apoptosis susceptibility protein, relieves the defects of cells lacking Pse1p and Kap123p. Thus, a major role of Pse1p, Kap123p, and Sxm1p may be nuclear export rather than import, suggesting a symmetrical relationship between these processes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Three different cDNAs, Prh-19, Prh-26, and Prh-43 [3′-phosphoadenosine-5′-phosphosulfate (PAPS) reductase homolog], have been isolated by complementation of an Escherichia coli cysH mutant, defective in PAPS reductase activity, to prototrophy with an Arabidopsis thaliana cDNA library in the expression vector λYES. Sequence analysis of the cDNAs revealed continuous open reading frames encoding polypeptides of 465, 458, and 453 amino acids, with calculated molecular masses of 51.3, 50.5, and 50.4 kDa, respectively, that have strong homology with fungal, yeast, and bacterial PAPS reductases. However, unlike microbial PAPS reductases, each PRH protein has an N-terminal extension, characteristic of a plastid transit peptide, and a C-terminal extension that has amino acid and deduced three-dimensional homology to thioredoxin proteins. Adenosine 5′-phosphosulfate (APS) was shown to be a much more efficient substrate than PAPS when the activity of the PRH proteins was tested by their ability to convert 35S-labeled substrate to acid-volatile 35S-sulfite. We speculate that the thioredoxin-like domain is involved in catalytic function, and that the PRH proteins may function as novel “APS reductase” enzymes. Southern hybridization analysis showed the presence of a small multigene family in the Arabidopsis genome. RNA blot hybridization with gene-specific probes revealed for each gene the presence of a transcript of ≈1.85 kb in leaves, stems, and roots that increased on sulfate starvation. To our knowledge, this is the first report of the cloning and characterization of plant genes that encode proteins with APS reductase activity and supports the suggestion that APS can be utilized directly, without activation to PAPS, as an intermediary substrate in reductive sulfate assimilation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We describe here a DNA polymerase family highly conserved in Euryarchaeota, a subdomain of Archaea. The DNA polymerase is composed of two proteins, DP1 and DP2. Sequence analysis showed that considerable similarity exists between DP1 and the second subunit of eukaryotic DNA polymerase δ, a protein essential for the propagation of Eukarya, and that DP2 has conserved motifs found in proteins with nucleotide-polymerizing activity. These results, together with our previous biochemical analyses of one of the members, DNA polymerase II (DP1 + DP2) from Pyrococcus furiosus, implicate the DNA polymerases of this family in the DNA replication process of Euryarchaeota. The discovery of this DNA-polymerase family, aside from providing an opportunity to enhance our knowledge of the evolution of DNA polymerases, is a significant step toward the complete understanding of DNA replication across the three domains of life.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Wnt family members are critical to many developmental processes, and components of the Wnt signaling pathway have been linked to tumorigenesis in familial and sporadic colon carcinomas. Here we report the identification of two genes, WISP-1 and WISP-2, that are up-regulated in the mouse mammary epithelial cell line C57MG transformed by Wnt-1, but not by Wnt-4. Together with a third related gene, WISP-3, these proteins define a subfamily of the connective tissue growth factor family. Two distinct systems demonstrated WISP induction to be associated with the expression of Wnt-1. These included (i) C57MG cells infected with a Wnt-1 retroviral vector or expressing Wnt-1 under the control of a tetracyline repressible promoter, and (ii) Wnt-1 transgenic mice. The WISP-1 gene was localized to human chromosome 8q24.1–8q24.3. WISP-1 genomic DNA was amplified in colon cancer cell lines and in human colon tumors and its RNA overexpressed (2- to >30-fold) in 84% of the tumors examined compared with patient-matched normal mucosa. WISP-3 mapped to chromosome 6q22–6q23 and also was overexpressed (4- to >40-fold) in 63% of the colon tumors analyzed. In contrast, WISP-2 mapped to human chromosome 20q12–20q13 and its DNA was amplified, but RNA expression was reduced (2- to >30-fold) in 79% of the tumors. These results suggest that the WISP genes may be downstream of Wnt-1 signaling and that aberrant levels of WISP expression in colon cancer may play a role in colon tumorigenesis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the intracellular death program, hetero- and homodimerization of different anti- and pro-apoptotic Bcl-2-related proteins are critical in the determination of cell fate. From a rat ovarian fusion cDNA library, we isolated a new pro-apoptotic Bcl-2 gene, Bcl-2-related ovarian killer (Bok). Bok had conserved Bcl-2 homology (BH) domains 1, 2, and 3 and a C-terminal transmembrane region present in other Bcl-2 proteins, but lacked the BH4 domain found only in anti-apoptotic Bcl-2 proteins. In the yeast two-hybrid system, Bok interacted strongly with some (Mcl-1, BHRF1, and Bfl-1) but not other (Bcl-2, Bcl-xL, and Bcl-w) anti-apoptotic members. This finding is in direct contrast to the ability of other pro-apoptotic members (Bax, Bak, and Bik) to interact with all of the anti-apoptotic proteins. In addition, negligible interaction was found between Bok and different pro-apoptotic members. In mammalian cells, overexpression of Bok induced apoptosis that was blocked by the baculoviral-derived cysteine protease inhibitor P35. Cell killing induced by Bok was also suppressed following coexpression with Mcl-1 and BHRF1 but not with Bcl-2, further indicating that Bok heterodimerized only with selective anti-apoptotic Bcl-2 proteins. Northern blot analysis indicated that Bok was highly expressed in the ovary, testis and uterus. In situ hybridization analysis localized Bok mRNA in granulosa cells, the cell type that underwent apoptosis during follicle atresia. Identification of Bok as a new pro-apoptotic Bcl-2 protein with restricted tissue distribution and heterodimerization properties could facilitate elucidation of apoptosis mechanisms in reproductive tissues undergoing hormone-regulated cyclic cell turnover.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dopamine is a neuromodulator involved in the control of key physiological functions. Dopamine-dependent signal transduction is activated through the interaction with membrane receptors of the seven-transmembrane domain G protein-coupled family. Among them, dopamine D2 receptor is highly expressed in the striatum and the pituitary gland as well as by mesencephalic dopaminergic neurons. Lack of D2 receptors in mice leads to a locomotor parkinsonian-like phenotype and to pituitary tumors. The D2 receptor promoter has characteristics of a housekeeping gene. However, the restricted expression of this gene to particular neurons and cells points to a strict regulation of its expression by cell-specific transcription factors. We demonstrate here that the D2 receptor promoter contains a functional retinoic acid response element. Furthermore, analysis of retinoic acid receptor-null mice supports our finding and shows that in these animals D2 receptor expression is reduced. This finding assigns to retinoids an important role in the control of gene expression in the central nervous system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report here the characterization of gp27 (hp24γ3), a glycoprotein of the p24 family of small and abundant transmembrane proteins of the secretory pathway. Immunoelectron and confocal scanning microscopy show that at steady state, gp27 localizes to the cis side of the Golgi apparatus. In addition, some gp27 was detected in COPI- and COPII-coated structures throughout the cytoplasm. This indicated cycling that was confirmed in three ways. First, 15°C temperature treatment resulted in accumulation of gp27 in pre-Golgi structures colocalizing with anterograde cargo. Second, treatment with brefeldin A caused gp27 to relocate into peripheral structures positive for both KDEL receptor and COPII. Third, microinjection of a dominant negative mutant of Sar1p trapped gp27 in the endoplasmic reticulum (ER) by blocking ER export. Together, this shows that gp27 cycles extensively in the early secretory pathway. Immunoprecipitation and coexpression studies further revealed that a significant fraction of gp27 existed in a hetero-oligomeric complex. Three members of the p24 family, GMP25 (hp24α2), p24 (hp24β1), and p23 (hp24δ1), coprecipitated in what appeared to be stochiometric amounts. This heterocomplex was specific. Immunoprecipitation of p26 (hp24γ4) failed to coprecipitate GMP25, p24, or p23. Also, very little p26 was found coprecipitating with gp27. A functional requirement for complex formation was suggested at the level of ER export. Transiently expressed gp27 failed to leave the ER unless other p24 family proteins were coexpressed. Comparison of attached oligosaccharides showed that gp27 and GMP25 recycled differentially. Only a very minor portion of GMP25 displayed complex oligosaccharides. In contrast, all of gp27 showed modifications by medial and trans enzymes at steady state. We conclude from these data that a portion of gp27 exists as hetero-oligomeric complexes with GMP25, p24, and p23 and that these complexes are in dynamic equilibrium with individual p24 proteins to allow for differential recycling and distributions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Inwardly rectifying potassium (K+) channels gated by G proteins (Kir3.x family) are widely distributed in neuronal, atrial, and endocrine tissues and play key roles in generating late inhibitory postsynaptic potentials, slowing the heart rate and modulating hormone release. They are directly activated by Gβγ subunits released from G protein heterotrimers of the Gi/o family upon appropriate receptor stimulation. Here we examine the role of isoforms of pertussis toxin (PTx)-sensitive G protein α subunits (Giα1–3 and GoαA) in mediating coupling between various receptor systems (A1, α2A, D2S, M4, GABAB1a+2, and GABAB1b+2) and the cloned counterpart of the neuronal channel (Kir3.1+3.2A). The expression of mutant PTx-resistant Gi/oα subunits in PTx-treated HEK293 cells stably expressing Kir3.1+3.2A allows us to selectively investigate that coupling. We find that, for those receptors (A1, α2A) known to interact with all isoforms, Giα1–3 and GoαA can all support a significant degree of coupling to Kir3.1+3.2A. The M4 receptor appears to preferentially couple to Giα2 while another group of receptors (D2S, GABAB1a+2, GABAB1b+2) activates the channel predominantly through Gβγ liberated from GoA heterotrimers. Interestingly, we have also found a distinct difference in G protein coupling between the two splice variants of GABAB1. Our data reveal selective pathways of receptor activation through different Gi/oα isoforms for stimulation of the G protein-gated inwardly rectifying K+ channel.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Increased histone acetylation has been correlated with increased transcription, and regions of heterochromatin are generally hypoacetylated. In investigating the cause-and-effect relationship between histone acetylation and gene activity, we have characterized two yeast histone deacetylase complexes. Histone deacetylase-A (HDA) is an ≈350-kDa complex that is highly sensitive to the deacetylase inhibitor trichostatin A. Histone deacetylase-B (HDB) is an ≈600-kDa complex that is much less sensitive to trichostatin A. The HDA1 protein (a subunit of the HDA activity) shares sequence similarity to RPD3, a factor required for optimal transcription of certain yeast genes. RPD3 is associated with the HDB activity. HDA1 also shares similarity to three new open reading frames in yeast, designated HOS1, HOS2, and HOS3. We find that both hda1 and rpd3 deletions increase acetylation levels in vivo at all sites examined in both core histones H3 and H4, with rpd3 deletions having a greater impact on histone H4 lysine positions 5 and 12. Surprisingly, both hda1 and rpd3 deletions increase repression at telomeric loci, which resemble heterochromatin with rpd3 having a greater effect. In addition, rpd3 deletions retard full induction of the PHO5 promoter fused to the reporter lacZ. These data demonstrate that histone acetylation state has a role in regulating both heterochromatic silencing and regulated gene expression.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The transcription factor E2F plays a major role in cell cycle control in mammalian cells. E2F binding sites, which are present in the promoters of a variety of genes required for S phase, shift from a negative to a positive role in transcription at the commitment point, a crucial point in G1 that precedes the G1/S transition. Before the commitment point, E2F activity is repressed by members of the pocket proteins family. This repression is believed to be crucial for the proper control of cell growth. We have previously shown that Rb, the founding member of the pocket proteins family, represses E2F1 activity by recruiting the histone deacetylase HDAC1. Here, we show that the two other members of the pocket proteins family, p107 and p130, also are able to interact physically with HDAC1 in live cells. HDAC1 interacts with p107 and Rb through an “LXCXE”-like motif, similar to that used by viral transforming proteins to bind and inactivate pocket proteins. Indeed, we find that the viral transforming protein E1A competes with HDAC1 for p107 interaction. We also demonstrate that p107 is able to interact simultaneously with HDAC1 and E2F4, suggesting a model in which p107 recruits HDAC1 to repress E2F sites. Indeed, we demonstrate that histone deacetylase activity is involved in the p107- or p130-induced repression of E2F4. Taken together, our data suggest that all members of the E2F family are regulated in early G1 by similar complexes, containing a pocket protein and the histone deacetylase HDAC1.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bas1p, a divergent yeast member of the Myb family of transcription factors, shares with the proteins of this family a highly conserved cysteine residue proposed to play a role in redox regulation. Substitutions of this residue in Bas1p (C153) allowed us to establish that, despite its very high conservation, it is not strictly required for Bas1p function: its substitution with a small hydrophobic residue led to a fully functional protein in vitro and in vivo. C153 was accessible to an alkylating agent in the free protein but was protected by prior exposure to DNA. The reactivity of cysteines in the first and third repeats was much lower than in the second repeat, suggesting a more accessible conformation of repeat 2. Proteolysis protection, fluorescence quenching and circular dichroism experiments further indicated that DNA binding induces structural changes making Bas1p less accessible to modifying agents. Altogether, our results strongly suggest that the second repeat of the DNA-binding domain of Bas1p behaves similarly to its Myb counterpart, i.e. a DNA-induced conformational change in the second repeat leads to formation of a full helix–turn–helix-related motif with the cysteine packed in the hydrophobic core of the repeat.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The polymerase chain reaction (PCR) is a versatile method to amplify specific DNA with oligonucleotide primers. By designing degenerate PCR primers based on amino acid sequences that are highly conserved among all known gene family members, new members of a multigene family can be identified. The inherent weakness of this approach is that the degenerate primers will amplify previously identified, in addition to new, family members. To specifically address this problem, we synthesized a specific RNA for each known family member so that it hybridized to one strand of the template, adjacent to the 3′-end of the primer, allowing the degenerate primer to bind yet preventing extension by DNA polymerase. To test our strategy, we used known members of the soluble, nitric oxide-sensitive guanylyl cyclase family as our templates and degenerate primers that discriminate this family from other guanylyl cyclases. We demonstrate that amplification of known members of this family is effectively and specifically inhibited by the corresponding RNAs, alone or in combination. This robust method can be adapted to any application where multiple PCR products are amplified, as long as the sequence of the desired and the undesired PCR product(s) is sufficiently distinct between the primers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The development of Alzheimer's disease (AD) later in life may be reflective of environmental factors operating over the course of a lifetime. Educational and occupational attainments have been found to be protective against the development of the disease but participation in activities has received little attention. In a case-control study, we collected questionnaire data about 26 nonoccupational activities from ages 20 to 60. Participants included 193 people with probable or possible AD and 358 healthy control-group members. Activity patterns for intellectual, passive, and physical activities were classified by using an adaptation of a published scale in terms of “diversity” (total number of activities), “intensity” (hours per month), and “percentage intensity” (percentage of total activity hours devoted to each activity category). The control group was more active during midlife than the case group was for all three activity categories, even after controlling for age, gender, income adequacy, and education. The odds ratio for AD in those performing less than the mean value of activities was 3.85 (95% confidence interval: 2.65–5.58, P < 0.001). The increase in time devoted to intellectual activities from early adulthood (20–39) to middle adulthood (40–60) was associated with a significant decrease in the probability of membership in the case group. We conclude that diversity of activities and intensity of intellectual activities were reduced in patients with AD as compared with the control group. These findings may be because inactivity is a risk factor for the disease or because inactivity is a reflection of very early subclinical effects of the disease, or both.