2 resultados para 914.35657003

em National Center for Biotechnology Information - NCBI


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Clostridium cellulovorans uses not only cellulose but also xylan, mannan, pectin, and several other carbon sources for its growth and produces an extracellular multienzyme complex called the cellulosome, which is involved in plant cell wall degradation. Here we report a gene for a cellulosomal subunit, pectate lyase A (PelA), lying downstream of the engY gene, which codes for cellulosomal enzyme EngY. pelA is composed of an ORF of 2,742 bp and encodes a protein of 914 aa with a molecular weight of 94,458. The amino acid sequence derived from pelA revealed a multidomain structure, i.e., an N-terminal domain partially homologous to the C terminus of PelB of Erwinia chrysanthemi belonging to family 1 of pectate lyases, a putative cellulose-binding domain, a catalytic domain homologous to PelL and PelX of E. chrysanthemi that belongs to family 4 of pectate lyases, and a duplicated sequence (or dockerin) at the C terminus that is highly conserved in enzymatic subunits of the C. cellulovorans cellulosome. The recombinant truncated enzyme cleaved polygalacturonic acid to digalacturonic acid (G2) and trigalacturonic acid (G3) but did not act on G2 and G3. There have been no reports available to date on pectate lyase genes from Clostridia.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The number of prokaryotes and the total amount of their cellular carbon on earth are estimated to be 4–6 × 1030 cells and 350–550 Pg of C (1 Pg = 1015 g), respectively. Thus, the total amount of prokaryotic carbon is 60–100% of the estimated total carbon in plants, and inclusion of prokaryotic carbon in global models will almost double estimates of the amount of carbon stored in living organisms. In addition, the earth’s prokaryotes contain 85–130 Pg of N and 9–14 Pg of P, or about 10-fold more of these nutrients than do plants, and represent the largest pool of these nutrients in living organisms. Most of the earth’s prokaryotes occur in the open ocean, in soil, and in oceanic and terrestrial subsurfaces, where the numbers of cells are 1.2 × 1029, 2.6 × 1029, 3.5 × 1030, and 0.25–2.5 × 1030, respectively. The numbers of heterotrophic prokaryotes in the upper 200 m of the open ocean, the ocean below 200 m, and soil are consistent with average turnover times of 6–25 days, 0.8 yr, and 2.5 yr, respectively. Although subject to a great deal of uncertainty, the estimate for the average turnover time of prokaryotes in the subsurface is on the order of 1–2 × 103 yr. The cellular production rate for all prokaryotes on earth is estimated at 1.7 × 1030 cells/yr and is highest in the open ocean. The large population size and rapid growth of prokaryotes provides an enormous capacity for genetic diversity.