2 resultados para 670308 Printing and publishing processes

em National Center for Biotechnology Information - NCBI


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Regional cerebral blood flow was measured with positron-emission tomography during two encoding and two retrieval tasks that were designed to compare memory for object features with memory for object locations. Bilateral increases in regional cerebral blood flow were observed in both anterior and posterior regions of inferior temporal cortex and in ventral regions of prestriate cortex, when the condition that required retrieval of object locations was subtracted from the condition that required retrieval of object features. During encoding, these changes were less pronounced and were restricted to the left inferior temporal cortex and right ventral prestriate cortex. In contrast, both encoding and retrieval of object location were associated with bilateral changes in dorsal prestriate and posterior parietal cortex. Finally, the two encoding conditions activated left frontal lobe regions preferentially, whereas the two retrieval conditions activated right frontal lobe regions. These findings confirm that, in human subjects, memory for object features is mediated by a distributed system that includes ventral prestriate cortex and both anterior and posterior regions of the inferior temporal gyrus. In contrast, memory for the locations of objects appears to be mediated by an anatomically distinct system that includes more dorsal regions of prestriate cortex and posterior regions of the parietal lobe.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Serine proteases of the chymotrypsin fold are of great interest because they provide detailed understanding of their enzymatic properties and their proposed role in a number of physiological and pathological processes. We have been developing the macromolecular inhibitor ecotin to be a “fold-specific” inhibitor that is selective for members of the chymotrypsin-fold class of proteases. Inhibition of protease activity through the use of wild-type and engineered ecotins results in inhibition of rat prostate differentiation and retardation of the growth of human PC-3 prostatic cancer tumors. In an effort to identify the proteases that may be involved in these processes, reverse transcription–PCR with PC-3 poly(A)+ mRNA was performed by using degenerate oligonucleotide primers. These primers were designed by using conserved protein sequences unique to chymotrypsin-fold serine proteases. Five proteases were identified: urokinase-type plasminogen activator, factor XII, protein C, trypsinogen IV, and a protease that we refer to as membrane-type serine protease 1 (MT-SP1). The cloning and characterization of the MT-SP1 cDNA shows that it encodes a mosaic protein that contains a transmembrane signal anchor, two CUB domains, four LDLR repeats, and a serine protease domain. Northern blotting shows broad expression of MT-SP1 in a variety of epithelial tissues with high levels of expression in the human gastrointestinal tract and the prostate. A His-tagged fusion of the MT-SP1 protease domain was expressed in Escherichia coli, purified, and autoactivated. Ecotin and variant ecotins are subnanomolar inhibitors of the MT-SP1 activated protease domain, suggesting a possible role for MT-SP1 in prostate differentiation and the growth of prostatic carcinomas.