4 resultados para 64-475A
em National Center for Biotechnology Information - NCBI
Resumo:
We describe the molecular cloning and characterization of the unc-64 locus of Caenorhabditis elegans. unc-64 expresses three transcripts, each encoding a molecule with 63–64% identity to human syntaxin 1A, a membrane- anchored protein involved in synaptic vesicle fusion. Interestingly, the alternative forms of syntaxin differ only in their C-terminal hydrophobic membrane anchors. The forms are differentially expressed in neuronal and secretory tissues; genetic evidence suggests that these forms are not functionally equivalent. A complete loss-of-function mutation in unc-64 results in a worm that completes embryogenesis, but arrests development shortly thereafter as a paralyzed L1 larva, presumably as a consequence of neuronal dysfunction. The severity of the neuronal phenotypes of C. elegans syntaxin mutants appears comparable to those of Drosophila syntaxin mutants. However, nematode syntaxin appears not to be required for embryonic development, for secretion of cuticle from the hypodermis, or for the function of muscle, in contrast to Drosophila syntaxin, which appears to be required in all cells. Less severe viable unc-64 mutants exhibit a variety of behavioral defects and show strong resistance to the acetylcholinesterase inhibitor aldicarb. Extracellular physiological recordings from pharyngeal muscle of hypomorphic mutants show alterations in the kinetics of transmitter release. The lesions in the hypomorphic alleles map to the hydrophobic face of the H3 coiled-coil domain of syntaxin, a domain that in vitro mediates physical interactions with similar coiled-coil domains in SNAP-25 and synaptobrevin. Furthermore, the unc-64 syntaxin mutants exhibit allele-specific genetic interactions with mutants carrying lesions in the coiled-coil domain of synaptobrevin, providing in vivo evidence for the significance of these domains in regulating synaptic vesicle fusion.
Resumo:
Rapid imaging by antitumor antibodies has been limited by the prolonged targeting kinetics and clearance of labeled whole antibodies. Genetically engineered fragments with rapid access and high retention in tumor tissue combined with rapid blood clearance are suitable for labeling with short-lived radionuclides, including positron-emitting isotopes for positron-emission tomography (PET). An engineered fragment was developed from the high-affinity anticarcinoembryonic antigen (CEA) monoclonal antibody T84.66. This single-chain variable fragment (Fv)-CH3, or minibody, was produced as a bivalent 80 kDa dimer. The macrocyclic chelating agent 1,4,7,10-tetraazacyclododecane-N,N′,N′′, N′′′-tetraacetic acid (DOTA) was conjugated to the anti-CEA minibody for labeling with copper-64, a positron-emitting radionuclide (t1/2 = 12.7 h). In vivo distribution was evaluated in athymic mice bearing paired LS174T human colon carcinoma (CEA positive) and C6 rat glioma (CEA negative) xenografts. Five hours after injection with 64Cu-DOTA-minibody, microPET imaging showed high uptake in CEA-positive tumor (17.9% injected dose per gram ± 3.79) compared with control tumor (6.0% injected dose per gram ± 1.0). In addition, significant uptake was seen in liver, with low uptake in other tissues. Average target/background ratios relative to neighboring tissue were 3–4:1. Engineered antibody fragments labeled with positron-emitting isotopes such as copper-64 provide a new class of agents for PET imaging of tumors.
Resumo:
The alpha subunits of the heterotrimeric guanine nucleotide-binding proteins (G proteins) hydrolyze GTP at a rate significantly higher than do most members of the Ras family of approximatelly 20-kDa GTP-binding proteins, which depend on a GTPase-activating protein (GAP) for acceleration of GTP hydrolysis. It has been demonstrated that an inserted domain in the G-protein alpha subunit, not present in the much smaller Ras-like proteins, is responsible for this difference [Markby, D. W., Onrust, R. & Bourne, H. R. (1993) Science 262, 1895-1900]. We report here that ARD1, a 64-kDa protein with an 18-kDa carboxyl-terminal ADP-ribosylation factor (ARF) domain, exhibited significant GTPase activity, whereas the ARF domain, expressed as a recombinant protein in Escherichia coli, did not. Addition of the 46-kDa amino-terminal extension (similarly synthesized in E. coli) to the GTP-binding ARF-domain of ARD1 enhanced GTPase activity and inhibited GDP dissociation. The kinetic properties of mixtures of the ARF and non-ARF domains were similar to those of an intact recombinant ARD1. Physical association of the two proteins was demonstrated directly by gel filtration and by using the immobilized non-ARF domain. Thus, like the alpha subunits of heterotrimeric G proteins, ARD1 appears to consist of two domains that interact to regulate the biological activity of the protein.