3 resultados para 612.39
em National Center for Biotechnology Information - NCBI
Resumo:
Objective: To determine whether tight control of blood pressure with either a β blocker or an angiotensin converting enzyme inhibitor has a specific advantage or disadvantage in preventing the macrovascular and microvascular complications of type 2 diabetes.
Resumo:
Reactive oxygen intermediates generated by the phagocyte NADPH oxidase are critically important components of host defense. However, these highly toxic oxidants can cause significant tissue injury during inflammation; thus, it is essential that their generation and inactivation are tightly regulated. We show here that an endogenous proline-arginine (PR)-rich antibacterial peptide, PR-39, inhibits NADPH oxidase activity by blocking assembly of this enzyme through interactions with Src homology 3 domains of a cytosolic component. This neutrophil-derived peptide inhibited oxygen-dependent microbicidal activity of neutrophils in whole cells and in a cell-free assay of NADPH oxidase. Both oxidase inhibitory and direct antimicrobial activities were defined within the amino-terminal 26 residues of PR-39. Oxidase inhibition was attributed to binding of PR-39 to the p47phox cytosolic oxidase component. Its effects involve both a polybasic amino-terminal segment and a proline-rich core region of PR-39 that binds to the p47phox Src homology 3 domains and, thereby, inhibits interaction with the small subunit of cytochrome b558, p22phox. These findings suggest that PR-39, which has been shown to be involved in tissue repair processes, is a multifunctional peptide that can regulate NADPH oxidase production of superoxide anion O2-. thus limiting excessive tissue damage during inflammation.
Resumo:
PR-39 is a porcine 39-aa peptide antibiotic composed of 49% proline and 24% arginine, with an activity against Gram-negative bacteria comparable to that of tetracycline. In Escherichia coli, it inhibits DNA and protein synthesis. PR-39 was originally isolated from pig small intestine, but subsequent cDNA cloning showed that the gene is expressed in the bone marrow. The open reading frame of the clone showed that PR-39 is made as 173-aa precursor whose proregion belongs to the cathelin family. The PR39 gene, which is rather compact and spans only 1784 bp has now been sequenced. The coding information is split into four exons. The first exon contains the signal sequence of 29 residues and the first 37 residues of the cathelin propart. Exons 2 and 3 contain only cathelin information, while exon 4 codes for the four C-terminal cathelin residues and the mature PR-39 peptide extended by three residues. The sequenced upstream region (1183 bp) contains four potential recognition sites for NF-IL6 and three for APRF, transcription factors known to regulate genes for both cytokines and acute phase response factors. Genomic hybridizations revealed a fairly high level of restriction fragment length polymorphism and indicated that there are at least two copies of the PR39 gene in the pig genome. PR39 was mapped to pig chromosome 13 by linkage and in situ hybridization mapping. The gene for the human peptide antibiotic FALL-39 (also a member of the cathelin family) was mapped to human chromosome 3, which is homologous to pig chromosome 13.