3 resultados para 58-444A

em National Center for Biotechnology Information - NCBI


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We measured the ortho-para conversion rate in solid hydrogen by using Raman scattering in a diamond-anvil cell, extending previous measurements by a factor of 60 in pressure. We confirm previous experiments that suggested a decrease in the conversion rate above about 0.5 GPa. We observe a distinct minimum at 3 GPa followed by a drastic increase in the conversion rate to our maximum pressure of 58 GPa. This pressure enhancement of conversion is not predicted by previous theoretical treatments and must be due to a new conversion pathway.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The hepatitis B virus X protein (HBx) sequence (154 aa) has been divided into six regions (A-F) based on its sequence homology with X proteins of other mammalian hepadnaviruses. Regions A, C, and E are more conserved and include all the four conserved cysteines (C7, C61, C69, and C137). To localize the regions of HBx important for transactivation, a panel of 10 deletion mutants (X5-X14) and 4 single point mutants (X1-X4), each corresponding to a conserved cysteine residue, was constructed by site-directed mutagenesis. A HBx-specific monoclonal antibody was developed and used to confirm the expression of mutants by Western blot. Transactivation property of the HBx mutants was studied on Rous sarcoma virus-long terminal repeat (RSV-LTR) in transient transfection assays. We observed that deletion of the most conserved region A or substitution of the N-terminal cysteine (C7) had no effect on transactivation. Deletion of the nonconserved regions B or F also had no deleterious effects. Deletions of regions C and D resulted in a significant loss of function. Substitution of both C61 and C69 present in region C, caused almost 90% loss of activity that could be partially overcome by transfecting more expression plasmid. The fully conserved 9 amino acid segment (residues 132 to 140) within region E including C137 appeared to be crucial for its activity. Finally, a truncated mutant X15 incorporating only regions C to E (amino acids 58-140) was able to stimulate the RSV-LTR quite efficiently, suggesting a crucial role played by this domain in transactivation function.