2 resultados para 48

em National Center for Biotechnology Information - NCBI


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Advanced glycation endproducts (AGEs) are derivatives of nonenzymatic reactions between sugars and protein or lipids, and together with AGE-specific receptors are involved in numerous pathogenic processes associated with aging and hyperglycemia. Two of the known AGE-binding proteins isolated from rat liver membranes, p60 and p90, have been partially sequenced. We now report that the N-terminal sequence of p60 exhibits 95% identity to OST-48, a 48-kDa member of the oligosaccharyltransferase complex found in microsomal membranes, while sequence analysis of p90 revealed 73% and 85% identity to the N-terminal and internal sequences, respectively, of human 80K-H, a 80- to 87-kDa protein substrate for protein kinase C. AGE-ligand and Western analyses of purified oligosaccharyltransferase complex, enriched rough endoplasmic reticulum, smooth endoplasmic reticulum, and plasma membranes from rat liver or RAW 264.7 macrophages yielded a single protein of approximately 50 kDa recognized by both anti-p60 and anti-OST-48 antibodies, and also exhibited AGE-specific binding. Immunoprecipitated OST-48 from rat rough endoplasmic reticulum fractions exhibited both AGE binding and immunoreactivity to an anti-p60 antibody. Immune IgG raised to recombinant OST-48 and 80K-H inhibited binding of AGE-bovine serum albumin to cell membranes in a dose-dependent manner. Immunostaining and flow cytometry demonstrated the surface expression of OST-48 and 80K-H on numerous cell types and tissues, including mononuclear, endothelial, renal, and brain neuronal and glial cells. We conclude that the AGE receptor components p60 and p90 are identical to OST-48, and 80K-H, respectively, and that they together contribute to the processing of AGEs from extra- and intracellular compartments and in the cellular responses associated with these pathogenic substances.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Interferon alpha induction of transcription operates through interferon-stimulated-gene factor 3 (ISGF), a transcription factor two components of which are members of the newly characterized Stat family of transcription factors. Interferon alpha induces tyrosine phosphorylation of Stat1 and Stat2 proteins that associate and, together with a 48-kDa protein, form ISGF3. Evidence is presented that a heterodimer of Stat1 and Stat2 is present in ISGF3 and that Stat1 and the 48-kDa protein make precise contact, while Stat2 makes general contact, with the interferon-stimulated response element, the binding site of the ISGF3.