2 resultados para 4-dihydro-pyridines
em National Center for Biotechnology Information - NCBI
Resumo:
We report here on the ability of IDRA 21 and aniracetam, two negative allosteric modulators of glutamate-induced DL-alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor desensitization, to attenuate alprazolam-induced learning deficit in patas monkeys working in a complex behavioral task. In one component of a multiple schedule (repeated acquisition or "learning"), patas monkeys acquired a different four-response chain each session by responding sequentially on three keys in the presence of four discriminative stimuli (geometric forms or numerals). In the other component (performance) the four-response chain was the same each session. The response chain in each component was maintained by food presentation under a fixed-ratio schedule. When alprazolam (0.1 or 0.32 mg/kg p.o.) was administered alone, this full allosteric modulator of gamma-aminobutyric acid type A (GABAA) receptors produced large decreases in the response rate and accuracy in the learning component of the task. IDRA 21 (3 or 5.6 mg/kg p.o.) and aniracetam (30 mg/kg p.o.) administered 60 min before alprazolam, having no effect when given alone, antagonized the large disruptive effects of alprazolam on learning. From dose-response studies, it can be estimated that IDRA 21 is approximately 10-fold more potent than aniracetam in antagonizing alprazolam-induced learning deficit. We conclude that IDRA 21, a chemically unrelated pharmacological congener of aniracetam, improves learning deficit induced in patas monkeys by the increase of GABAergic tone elicited by alprazolam. Very likely IDRA 21 exerts its behavioral effects by antagonizing AMPA receptor desensitization.
Resumo:
A spontaneous mutator strain of Escherichia coli (fpg mutY) was used to clone the OGG1 gene of Saccharomyces cerevisiae, which encodes a DNA glycosylase activity that excises 7,8-dihydro-8-oxoguanine (8-OxoG). E. coli (fpg mutY) was transformed by a yeast DNA library, and clones that showed a reduced spontaneous mutagenesis were selected. The antimutator activity was associated with pYSB10, an 11-kbp recombinant plasmid. Cell-free extracts of E. coli (fpg mutY) harboring pYSB10 possess an enzymatic activity that cleaves a 34-mer oligonucleotide containing a single 8-oxoG opposite a cytosine (8-OxoG/C). The yeast DNA fragment of 1.7 kbp that suppresses spontaneous mutagenesis and overproduces the 8-OxoG/C cleavage activity was sequenced and mapped to chromosome XIII. DNA sequencing identified an open reading frame, designated OGG1, which encodes a protein of 376 amino acids with a molecular mass of 43 kDa. The OGG1 gene was inserted in plasmid pUC19, yielding pYSB110. E. coli (fpg) harboring pYSB110 was used to purify the Ogg1 protein of S. cerevisiae to apparent homogeneity. The Ogg1 protein possesses a DNA glycosylase activity that releases 8-OxoG and 2,6-diamino-4-hydroxy-5-N-methylformamidopyrimidine. The Ogg1 protein preferentially incises DNA that contains 8-OxoG opposite cytosine (8-OxoG/C) or thymine (8-OxoG/T). In contrast, Ogg1 protein does not incise the duplex where an adenine is placed opposite 8-OxoG (8-OxoG/A). The mechanism of strand cleavage by Ogg1 protein is probably due to the excision of 8-OxoG followed by a beta-elimination at the resulting apurinic/apyrimidinic site.