5 resultados para 4-COMPARTMENT MODEL
em National Center for Biotechnology Information - NCBI
Resumo:
Existing methods for assessing protein synthetic rates (PSRs) in human skeletal muscle are invasive and do not readily provide information about individual muscle groups. Recent studies in canine skeletal muscle yielded PSRs similar to results of simultaneous stable isotope measurements using l-[1-13C, methyl-2H3]methionine, suggesting that positron-emission tomography (PET) with l-[methyl-11C]methionine could be used along with blood sampling and a kinetic model to provide a less invasive, regional assessment of PSR. We have extended and refined this method in an investigation with healthy volunteers studied in the postabsorptive state. They received ≈25 mCi of l-[methyl-11C]methionine with serial PET imaging of the thighs and arterial blood sampling for a period of 90 min. Tissue and metabolite-corrected arterial blood time activity curves were fitted to a three-compartment model. PSR (nmol methionine⋅min−1⋅g muscle tissue−1) was calculated from the fitted parameter values and the plasma methionine concentrations, assuming equal rates of protein synthesis and degradation. Pooled mean PSR for the anterior and posterior sites was 0.50 ± 0.040. When converted to a fractional synthesis rate for mixed proteins in muscle, assuming a protein-bound methionine content of muscle tissue, the value of 0.125 ± 0.01%⋅h−1 compares well with estimates from direct tracer incorporation studies, which generally range from ≈0.05 to 0.09%⋅h−1. We conclude that PET can be used to estimate skeletal muscle PSR in healthy human subjects and that it holds promise for future in vivo, noninvasive studies of the influences of physiological factors, pharmacological manipulations, and disease states on this important component of muscle protein turnover and balance.
Resumo:
To quantitatively investigate the trafficking of the transmembrane lectin VIP36 and its relation to cargo-containing transport carriers (TCs), we analyzed a C-terminal fluorescent-protein (FP) fusion, VIP36-SP-FP. When expressed at moderate levels, VIP36-SP-FP localized to the endoplasmic reticulum, Golgi apparatus, and intermediate transport structures, and colocalized with epitope-tagged VIP36. Temperature shift and pharmacological experiments indicated VIP36-SP-FP recycled in the early secretory pathway, exhibiting trafficking representative of a class of transmembrane cargo receptors, including the closely related lectin ERGIC53. VIP36-SP-FP trafficking structures comprised tubules and globular elements, which translocated in a saltatory manner. Simultaneous visualization of anterograde secretory cargo and VIP36-SP-FP indicated that the globular structures were pre-Golgi carriers, and that VIP36-SP-FP segregated from cargo within the Golgi and was not included in post-Golgi TCs. Organelle-specific bleach experiments directly measured the exchange of VIP36-SP-FP between the Golgi and endoplasmic reticulum (ER). Fitting a two-compartment model to the recovery data predicted first order rate constants of 1.22 ± 0.44%/min for ER → Golgi, and 7.68 ± 1.94%/min for Golgi → ER transport, revealing a half-time of 113 ± 70 min for leaving the ER and 1.67 ± 0.45 min for leaving the Golgi, and accounting for the measured steady-state distribution of VIP36-SP-FP (13% Golgi/87% ER). Perturbing transport with AlF4− treatment altered VIP36-SP-GFP distribution and changed the rate constants. The parameters of the model suggest that relatively small differences in the first order rate constants, perhaps manifested in subtle differences in the tendency to enter distinct TCs, result in large differences in the steady-state localization of secretory components.
Resumo:
Positron emission tomography (PET) with L-[methyl-11C]methionine was explored as an in vivo, noninvasive, quantitative method for measuring the protein synthesis rate (PSR) in paraspinal and hind limb muscles of anesthetized dogs. Approximately 25 mCi (1 Ci = 37 GBq) of L-[methyl-11C]methionine was injected intravenously, and serial images and arterial blood samples were acquired over 90 min. Data analysis was performed by fitting tissue- and metabolite-corrected arterial blood time-activity curves to a three-compartment model and assuming insignificant transamination and transmethylation in this tissue. PSR was calculated from fitted parameter values and plasma methionine concentrations. PSRs measured by PET were compared with arterio-venous (A-V) difference measurements across the hind limb during primed constant infusion (5-6 h) of L-[1-13C, methyl-2H3]methionine. Results of PET measurements demonstrated similar PSRs for paraspinal and hind limb muscles: 0.172 +/- 0.062 vs. 0.208 +/- 0.048 nmol-1.min-1.(g of muscle)-1 (P = not significant). PSR determined by the stable isotope technique was 0.27 +/- 0.050 nmol-1.min-1.(g of leg tissue)-1 (P < 0.07 from PET) and indicated that the contribution of transmethylation to total hind limb methionine utilization was approximately 10%. High levels of L-[methyl-11C]methionine utilization by bone marrow were observed. We conclude that muscle PSR can be measured in vivo by PET and that this approach offers promise for application in human metabolic studies.
Resumo:
1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) damages dopaminergic neurons in the substantia nigra pars compacta (SNpc) as seen in Parkinson's disease. Here, we show that the pro-apoptotic protein Bax is highly expressed in the SNpc and that its ablation attenuates SNpc developmental neuronal apoptosis. In adult mice, there is an up-regulation of Bax in the SNpc after MPTP administration and a decrease in Bcl-2. These changes parallel MPTP-induced dopaminergic neurodegeneration. We also show that mutant mice lacking Bax are significantly more resistant to MPTP than their wild-type littermates. This study demonstrates that Bax plays a critical role in the MPTP neurotoxic process and suggests that targeting Bax may provide protective benefit in the treatment of Parkinson's disease.
Resumo:
Atherosclerosis is a complex disease resulting from the interaction of multiple genes. We have used the Ldlr knockout mouse model in an interspecific genetic cross to map atherosclerosis susceptibility loci. A total of 174 (MOLF/Ei × B6.129S7-Ldlrtm1Her) × C57BL/6J-Ldlrtm1Her backcross mice, homozygous for the Ldlr null allele, were fed a Western-type diet for 3 months and then killed for quantification of aortic lesions. A genome scan was carried out by using DNA pools and microsatellite markers spaced at ≈18-centimorgan intervals. Quantitative trait locus analysis of individual backcross mice confirmed linkages to chromosomes 4 (Athsq1, logarithm of odds = 6.2) and 6 (Athsq2, logarithm of odds = 6.7). Athsq1 affected lesions in females only whereas Athsq2 affected both sexes. Among females, the loci accounted for ≈50% of the total variance of lesion area. The susceptible allele at Athsq1 was derived from the MOLF/Ei genome whereas the susceptible allele at Athsq2 was derived from C57BL/6J. Inheritance of susceptible alleles at both loci conferred a 2-fold difference in lesion area, suggesting an additive effect of Athsq1 and Athsq2. No associations were observed between the quantitative trait loci and levels of plasma total cholesterol, high density lipoprotein cholesterol, non-high density lipoprotein cholesterol, insulin, or body weight. We provide strong evidence for complex inheritance of atherosclerosis in mice with elevated plasma low density lipoprotein cholesterol and show a major influence of nonlipoprotein-related factors on disease susceptibility. Athsq1 and Athsq2 represent candidate susceptibility loci for human atherosclerosis, most likely residing on chromosomes 1p36–32 and 12p13–12, respectively.