3 resultados para 3RD SHELL
em National Center for Biotechnology Information - NCBI
Resumo:
Neutron scattering experiments are used to determine scattering profiles for aqueous solutions of hydrophobic and hydrophilic amino acid analogs. Solutions of hydrophobic solutes show a shift in the main diffraction peak to smaller angle as compared with pure water, whereas solutions of hydrophilic solutes do not. The same difference for solutions of hydrophobic and hydrophilic side chains is also predicted by molecular dynamics simulations. The neutron scattering curves of aqueous solutions of hydrophobic amino acids at room temperature are qualitatively similar to differences between the liquid molecular structure functions measured for ambient and supercooled water. The nonpolar solute-induced expansion of water structure reported here is also complementary to recent neutron experiments where compression of aqueous solvent structure has been observed at high salt concentration.
Resumo:
The nucleus accumbens is considered a critical target of the action of drugs of abuse. In this nucleus a "shell" and a "core" have been distinguished on the basis of anatomical and histochemical criteria. The present study investigated the effect in freely moving rats of intravenous cocaine, amphetamine, and morphine on extracellular dopamine concentrations in the nucleus accumbens shell and core by means of microdialysis with vertically implanted concentric probes. Doses selected were in the range of those known to sustain drug self-administration in rats. Morphine, at 0.2 and 0.4 mg/kg, and cocaine, at 0.5 mg/kg, increased extracellular dopamine selectivity in the shell. Higher doses of cocaine (1.0 mg/kg) and the lowest dose of amphetamine tested (0.125 mg/kg) increased extracellular dopamine both in the shell and in the core, but the effect was significantly more pronounced in the shell compared with the core. Only the highest dose of amphetamine (0.250 mg/kg) increased extracellular dopamine in the shell and in the core to a similar extent. The present results provide in vivo neurochemical evidence for a functional compartmentation within the nucleus accumbens and for a preferential effect of psychostimulants and morphine in the shell of the nucleus accumbens at doses known to sustain intravenous drug self-administration.
Resumo:
Temporal and spatial changes in the intracellular Ca2+ concentration ([Ca2+]i) were examined in dendrites and somata of rat cerebellar Purkinje neurons by combining whole-cell patch-clamp recording and fast confocal laser-scanning microscopy. In cells loaded via the patch pipette with the high-affinity Ca2+ indicator Calcium Green-1 (Kd approximately 220 nM), a single synaptic climbing fiber response, a so-called complex spike, resulted in a transient elevation of [Ca2+]i that showed distinct differences among various subcellular compartments. With conventional imaging, the Ca2+ signals were prominent in the dendrites and almost absent in the soma. Confocal recordings from the somatic region, however, revealed steep transient increases in [Ca2+]i that were confined to a submembrane shell of 2- to 3-microns thickness. In the central parts of the soma [Ca2+]i increases were much slower and had smaller amplitudes. The kinetics and amplitudes of the changes in [Ca2+]i were analyzed in more detail by using the fast, low-affinity Ca2+ indicator Calcium Green-5N (Kd approximately 17 microM). We found that brief depolarizing pulses produced [Ca2+]i increases in a narrow somatic submembrane shell that resembled those seen in the dendrites. These results provide direct experimental evidence that the surface-to-volume ratio is a critical determinant of the spatiotemporal pattern of Ca2+ signals evoked by synaptic activity in neurons.