3 resultados para 330.1[82]
em National Center for Biotechnology Information - NCBI
Resumo:
We have used Mössbauer and electron paramagnetic resonance (EPR) spectroscopy to study a heme-N-alkylated derivative of chloroperoxidase (CPO) prepared by mechanism-based inactivation with allylbenzene and hydrogen peroxide. The freshly prepared inactivated enzyme (“green CPO”) displayed a nearly pure low-spin ferric EPR signal with g = 1.94, 2.15, 2.31. The Mössbauer spectrum of the same species recorded at 4.2 K showed magnetic hyperfine splittings, which could be simulated in terms of a spin Hamiltonian with a complete set of hyperfine parameters in the slow spin fluctuation limit. The EPR spectrum of green CPO was simulated using a three-term crystal field model including g-strain. The best-fit parameters implied a very strong octahedral field in which the three 2T2 levels of the (3d)5 configuration in green CPO were lowest in energy, followed by a quartet. In native CPO, the 6A1 states follow the 2T2 ground state doublet. The alkene-mediated inactivation of CPO is spontaneously reversible. Warming of a sample of green CPO to 22°C for increasing times before freezing revealed slow conversion of the novel EPR species to two further spin S = ½ ferric species. One of these species displayed g = 1.82, 2.25, 2.60 indistinguishable from native CPO. By subtracting spectral components due to native and green CPO, a third species with g = 1.86, 2.24, 2.50 could be generated. The EPR spectrum of this “quasi-native CPO,” which appears at intermediate times during the reactivation, was simulated using best-fit parameters similar to those used for native CPO.
Resumo:
The vitamin K-dependent carboxylase modifies and renders active vitamin K-dependent proteins involved in hemostasis, cell growth control, and calcium homeostasis. Using a novel mechanism, the carboxylase transduces the free energy of vitamin K hydroquinone (KH2) oxygenation to convert glutamate into a carbanion intermediate, which subsequently attacks CO2, generating the γ-carboxylated glutamate product. How the carboxylase effects this conversion is poorly understood because the active site has not been identified. Dowd and colleagues [Dowd, P., Hershline, R., Ham, S. W. & Naganathan, S. (1995) Science 269, 1684–1691] have proposed that a weak base (cysteine) produces a strong base (oxygenated KH2) capable of generating the carbanion. To define the active site and test this model, we identified the amino acids that participate in these reactions. N-ethyl maleimide inhibited epoxidation and carboxylation, and both activities were equally protected by KH2 preincubation. Amino acid analysis of 14C- N-ethyl maleimide-modified human carboxylase revealed 1.8–2.3 reactive residues and a specific activity of 7 × 108 cpm/hr per mg. Tryptic digestion and liquid chromatography electrospray mass spectrometry identified Cys-99 and Cys-450 as active site residues. Mutation to serine reduced both epoxidation and carboxylation, to 0.2% (Cys-99) or 1% (Cys-450), and increased the Kms for a glutamyl substrate 6- to 8-fold. Retention of some activity indicates a mechanism for enhancing cysteine/serine nucleophilicity, a property shared by many active site thiol enzymes. These studies, which represent a breakthrough in defining the carboxylase active site, suggest a revised model in which the glutamyl substrate indirectly coordinates at least one thiol, forming a catalytic complex that ionizes a thiol to initiate KH2 oxygenation.
Resumo:
Recently, Block and coworkers [Visscher, K., Schnitzer, M. J., & Block, S. M. (1999) Nature (London) 400, 184–189 and Schnitzer, M. J., Visscher, K. & Block, S. M. (2000) Nat. Cell Biol. 2, 718–723] have reported extensive observations of individual kinesin molecules moving along microtubules in vitro under controlled loads, F = 1 to 8 pN, with [ATP] = 1 μM to 2 mM. Their measurements of velocity, V, randomness, r, stalling force, and mean run length, L, reveal a need for improved theoretical understanding. We show, presenting explicit formulae that provide a quantitative basis for comparing distinct molecular motors, that their data are satisfactorily described by simple, discrete-state, sequential stochastic models. The simplest (N = 2)-state model with fixed load-distribution factors and kinetic rate constants concordant with stopped-flow experiments, accounts for the global (V, F, L, [ATP]) interdependence and, further, matches relative acceleration observed under assisting loads. The randomness, r(F,[ATP]), is accounted for by a waiting-time distribution, ψ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} \begin{equation*}{\mathrm{_{1}^{+}}}\end{equation*}\end{document}(t), [for the transition(s) following ATP binding] with a width parameter ν ≡ 〈t〉2/〈(Δt)2〉≃2.5, indicative of a dispersive stroke of mechanicity ≃0.6 or of a few (≳ν − 1) further, kinetically coupled states: indeed, N = 4 (but not N = 3) models do well. The analysis reveals: (i) a substep of d0 = 1.8–2.1 nm on ATP binding (consistent with structurally based suggestions); (ii) comparable load dependence for ATP binding and unbinding; (iii) a strong load dependence for reverse hydrolysis and subsequent reverse rates; and (iv) a large (≳50-fold) increase in detachment rate, with a marked load dependence, following ATP binding.