3 resultados para 302 Social interaction

em National Center for Biotechnology Information - NCBI


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Four unrelated patients are described with a syndrome that included developmental delay, seizures, ataxia, recurrent infections, severe language deficit, and an unusual behavioral phenotype characterized by hyperactivity, short attention span, and poor social interaction. These manifestations appeared within the first few years of life. Each patient displayed abnormalities on EEG. No unusual metabolites were found in plasma or urine, and metabolic testing was normal except for persistent hypouricosuria. Investigation of purine and pyrimidine metabolism in cultured fibroblasts derived from these patients showed normal incorporation of purine bases into nucleotides but decreased incorporation of uridine. De novo synthesis of purines and cellular phosphoribosyl pyrophosphate content also were moderately decreased. The distribution of incorporated purines and pyrimidines did not reveal a pattern suggestive of a deficient enzyme activity. Assay of individual enzymes in fibroblast lysates showed no deficiencies. However, the activity of cytosolic 5′-nucleotidase was elevated 6- to 10-fold. Based on the possibility that the observed increased catabolic activity and decreased pyrimidine salvage might be causing a deficiency of pyrimidine nucleotides, the patients were treated with oral pyrimidine nucleoside or nucleotide compounds. All patients showed remarkable improvement in speech and behavior as well as decreased seizure activity and frequency of infections. A double-blind placebo trial was undertaken to ascertain the efficacy of this supplementation regimen. Upon replacement of the supplements with placebo, all patients showed rapid regression to their pretreatment states. These observations suggest that increased nucleotide catabolism is related to the symptoms of these patients, and that the effects of this increased catabolism are reversed by administration of uridine.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The life-history strategies of organisms are sculpted over evolutionary time by the relative prospects of present and future reproductive success. As a consequence, animals of many species show flexible behavioral responses to environmental and social change. Here we show that disruption of the habitat of a colony of African cichlid fish, Haplochromis burtoni (Günther) caused males to switch social status more frequently than animals kept in a stable environment. H. burtoni males can be either reproductively active, guarding a territory, or reproductively inactive (nonterritorial). Although on average 25–50% of the males are territorial in both the stable and unstable environments, during the 20-week study, nearly two-thirds of the animals became territorial for at least 1 week. Moreover, many fish changed social status several times. Surprisingly, the induced changes in social status caused changes in somatic growth. Nonterritorial males and animals ascending in social rank showed an increased growth rate whereas territorial males and animals descending in social rank slowed their growth rate or even shrank. Similar behavioral and physiological changes are caused by social change in animals kept in stable environmental conditions, although at a lower rate. This suggests that differential growth, in interaction with environmental conditions, is a central mechanism underlying the changes in social status. Such reversible phenotypic plasticity in a crucial life-history trait may have evolved to enable animals to shift resources from reproduction to growth or vice versa, depending on present and future reproductive prospects.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The vaccinia virus early transcription factor (VETF), a heterodimeric protein composed of 82- and 70-kDa subunits, interacts with viral early promoters at both a sequence-specific core region upstream and a sequence-independent region downstream of the RNA start site. To determine the VETF subunit-promoter interactions, 32P-labeled DNA targets were chemically synthesized with uniquely positioned phosphorothioates to which azidophenacyl bromide moieties were coupled. After incubating the derivatized promoter with VETF and exposing the complex to 302-nm light, the protein was denatured and the individual subunits with or without covalently bound DNA were isolated with specific antiserum and analyzed by SDS/polyacrylamide gel electrophoresis. Using a set of 26 duplex probes, with uniquely positioned aryl azide moieties on the coding or template strands, we found that the 82-kDa subunit interacted primarily with the core region of the promoter, whereas the 70-kDa subunit interacted with the downstream region. Nucleotide substitutions in the core region that downregulate transcription affected the binding of both subunits: the 82-kDa subunit no longer exhibited specificity for upstream regions of the promoter but also bound to downstream regions, whereas the binding of the 70-kDa subunit was abolished even though the mutations were far upstream of its binding site. These results suggested mechanisms by which the interaction of the 82-kDa subunit with the core sequence directs binding of the 70-kDa subunit to DNA downstream.