4 resultados para 3-d Particle Rotation
em National Center for Biotechnology Information - NCBI
Resumo:
The database reported here is derived using the Combinatorial Extension (CE) algorithm which compares pairs of protein polypeptide chains and provides a list of structurally similar proteins along with their structure alignments. Using CE, structure–structure alignments can provide insights into biological function. When a protein of known function is shown to be structurally similar to a protein of unknown function, a relationship might be inferred; a relationship not necessarily detectable from sequence comparison alone. Establishing structure–structure relationships in this way is of great importance as we enter an era of structural genomics where there is a likelihood of an increasing number of structures with unknown functions being determined. Thus the CE database is an example of a useful tool in the annotation of protein structures of unknown function. Comparisons can be performed on the complete PDB or on a structurally representative subset of proteins. The source protein(s) can be from the PDB (updated monthly) or uploaded by the user. CE provides sequence alignments resulting from structural alignments and Cartesian coordinates for the aligned structures, which may be analyzed using the supplied Compare3D Java applet, or downloaded for further local analysis. Searches can be run from the CE web site, http://cl.sdsc.edu/ce.html, or the database and software downloaded from the site for local use.
Bones of the Skull: A 3-D Learning Tool, QuickTime VR Anatomical Resources, and Yorick: The VR Skull
Resumo:
Signal recognition particle (SRP) is a stable cytoplasmic ribonucleoprotein complex that serves to translocate secretory proteins across membranes during translation. The SRP Database (SRPDB) provides compilations of SRP components, ordered alphabetically and phylogenetically. Alignments emphasize phylogenetically-supported base pairs in SRP RNA and conserved residues in the proteins. Data are provided in various formats including a column arrangement for improved access and simplified computational usability. Included are motifs for identification of new sequences, SRP RNA secondary structure diagrams, 3-D models and links to high-resolution structures. This release includes 11 new SRP RNA sequences (total of 129), two protein SRP9 sequences (total of seven), two protein SRP14 sequences (total of 10), two protein SRP19 sequences (total of 16), 10 new SRP54 (ffh) sequences (total of 66), two protein SRP68 sequences (total of seven) and two protein SRP72 sequences (total of nine). Seven sequences of the SRP receptor α-subunit and its FtsY homolog (total of 51) are new. Also considered are β-subunit of SRP receptor, Flhf, Hbsu, CaM kinase II and cpSRP43. Access to SRPDB is at http://psyche.uthct.edu/dbs/SRPDB/SRPDB.html and the European mirror http://www.medkem.gu.se/dbs/SRPDB/SRPDB.html
Resumo:
The cyclic β-(1→3),β-(1→6)-d-glucan synthesis locus of Bradyrhizobium japonicum is composed of at least two genes, ndvB and ndvC. Mutation in either gene affects glucan synthesis, as well as the ability of the bacterium to establish a successful symbiotic interaction with the legume host soybean (Glycine max). B. japonicum strain AB-14 (ndvB::Tn5) does not synthesize β-glucans, and strain AB-1 (ndvC::Tn5) synthesizes a cyclic β-glucan lacking β-(1→6)-glycosidic bonds. We determined that the structure of the glucan synthesized by strain AB-1 is cyclodecakis-(1→3)-β-d-glucosyl, a cyclic β-(1→3)-linked decasaccharide in which one of the residues is substituted in the 6 position with β-laminaribiose. Cyclodecakis-(1→3)-β-d-glucosyl did not suppress the fungal β-glucan-induced plant defense response in soybean cotyledons and had much lower affinity for the putative membrane receptor protein than cyclic β-(1→3),β-(1→6)-glucans produced by wild-type B. japonicum. This is consistent with the hypothesis presented previously that the wild-type cyclic β-glucans may function as suppressors of a host defense response.