13 resultados para 3,4-Aminobenzoic acid
em National Center for Biotechnology Information - NCBI
Resumo:
Global long-term potentiation (LTP) was induced in organotypic hippocampal slice cultures by a brief application of 10 mM glycine. Glycine-induced LTP was occluded by previous theta burst stimulation-induced potentiation, indicating that both phenomena share similar cellular processes. Glycine-induced LTP was associated with increased [3H]α-amino-3-hydroxyl-5-methyl-4-isoxazolepropionic acid (AMPA) binding in membrane fractions as well as increased amount of a selective spectrin breakdown product generated by calpain-mediated spectrin proteolysis. Antibodies against the C-terminal (C-Ab) and N-terminal (N-Ab) domains of GluR1 subunits were used to evaluate structural changes in AMPA receptor properties resulting from glycine-induced LTP. No quantitative or qualitative changes were observed in Western blots from membrane fractions prepared from glycine-treated slices with C-Ab. In contrast, Western blots stained with N-Ab revealed the formation of a 98-kDa species of GluR1 subunits as well as an increased amount of immunoreactivity after glycine-induced LTP. The amount of spectrin breakdown product was positively correlated with the amount of the 98-kDa species of GluR1 after glycine treatment. Functional modifications of AMPA receptors were evaluated by determining changes in the effect of pressure-applied AMPA on synaptic responses before and after glycine-induced LTP. Glycine treatment produced a significant increase in AMPA receptor function after potentiation that correlated with the degree of potentiation. The results indicate that LTP induction produces calpain activation, truncation of the C-Ab domain of GluR1 subunits of AMPA receptors, and increased AMPA receptor function. They also suggest that insertion of new receptors takes place after LTP induction.
Resumo:
Src-family protein tyrosine kinases (PTKs) transduce signals to regulate neuronal development and synaptic plasticity. However, the nature of their activators and molecular mechanisms underlying these neural processes are unknown. Here, we show that brain-derived neurotrophic factor (BDNF) and platelet-derived growth factor enhance expression of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-type glutamate receptor 1 and 2/3 proteins in rodent neocortical neurons via the Src-family PTK(s). The increase in AMPA receptor levels was blocked in cultured neocortical neurons by addition of a Src-family-selective PTK inhibitor. Accordingly, neocortical cultures from Fyn-knockout mice failed to respond to BDNF whereas those from wild-type mice responded. Moreover, the neocortex of young Fyn mutants exhibited a significant in vivo reduction in these AMPA receptor proteins but not in their mRNA levels. In vitro kinase assay revealed that BDNF can indeed activate the Fyn kinase: It enhanced tyrosine phosphorylation of Fyn as well as that of enolase supplemented exogenously. All of these results suggest that the Src-family kinase Fyn, activated by the growth factors, plays a crucial role in modulating AMPA receptor expression during brain development.
Resumo:
In the cortex fast excitatory synaptic currents onto excitatory pyramidal neurons and inhibitory nonpyramidal neurons are mediated by alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptors exhibiting cell-type-specific differences in their kinetic properties. AMPA receptors consist of four subunits (GluR1-4), each existing as two splice variants, flip and flop, which critically affect the desensitization properties of receptors expressed in heterologous systems. Using single cell reverse transcription PCR to analyze the mRNA of AMPA receptor subunits expressed in layers I-III neocortical neurons, we find that 90% of the GluR1-4 in nonpyramidal neurons are flop variants, whereas 92% of the GluR1-4 in pyramidal neurons are flip variants. We also find that nonpyramidal neurons predominantly express GluR1 mRNA (GluR1/GluR1-4 = 59%), whereas pyramidal neurons contain mainly GluR2 mRNA (GluR2/GluR1-4 = 59%). However, the neuron-type-specific splicing is exhibited by all four AMPA receptor subunits. We suggest that the predominance of the flop variants contributes to the faster and more extensive desensitization in nonpyramidal neurons, compared to pyramidal cells where flip variants are dominant. Alternative splicing of AMPA receptors may play an important role in regulating synaptic function in a cell-type-specific manner, without changing permeation properties.
Resumo:
alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors that lack the glutamate receptor GluR2 subunit are Ca(2+)-permeable and exhibit inwardly rectifying current responses to kainate and AMPA. A proportion of cultured rat hippocampal neurons show similar Ca(2+)-permeable inwardly rectifying AMPA receptor currents. Inward rectification in these neurons was lost with intracellular dialysis and was not present in excised outside-out patches but was maintained in perforated-patch whole-cell recordings, suggesting that a diffusible cytoplasmic factor may be responsible for rectification. Inclusion of the naturally occurring polyamines spermine and spermidine in the recording pipette prevented loss of rectification in both whole-cell and excised-patch recordings; Mg2+ and putrescine were without effect. Inward rectification of Ca(2+)-permeable AMPA receptors may reflect voltage-dependent channel block by intracellular polyamines.
Resumo:
Cucumber (Cucumis sativa) leaves infiltrated with Pseudomonas syringae pv. syringae cells produced a mobile signal for systemic acquired resistance between 3 and 6 h after inoculation. The production of a mobile signal by inoculated leaves was followed by a transient increase in phenylalanine ammonia-lyase (PAL) activity in the petioles of inoculated leaves and in stems above inoculated leaves; with peaks in activity at 9 and 12 h, respectively, after inoculation. In contrast, PAL activity in inoculated leaves continued to rise slowly for at least 18 h. No increases in PAL activity were detected in healthy leaves of inoculated plants. Two benzoic acid derivatives, salicylic acid (SA) and 4-hydroxybenzoic acid (4HBA), began to accumulate in phloem fluids at about the time PAL activity began to increase, reaching maximum concentrations 15 h after inoculation. The accumulation of SA and 4HBA in phloem fluids was unaffected by the removal of all leaves 6 h after inoculation, and seedlings excised from roots prior to inoculation still accumulated high levels of SA and 4HBA. These results suggest that SA and 4HBA are synthesized de novo in stems and petioles in response to a mobile signal from the inoculated leaf.
Resumo:
A 145-kDa tyrosine-phosphorylated protein that becomes associated with Shc in response to multiple cytokines has been purified from the murine hemopoietic cell line B6SUtA1. Amino acid sequence data were used to clone the cDNA encoding this protein from a B6SUtA1 library. The predicted amino acid sequence encodes a unique protein containing an N-terminal src homology 2 domain, two consensus sequences that are targets for phosphotyrosine binding domains, a proline-rich region, and two motifs highly conserved among inositol polyphosphate 5-phosphatases. Cell lysates immunoprecipitated with antiserum to this protein exhibited both phosphatidylinositol 3,4,5-trisphosphate and inositol 1,3,4,5-tetrakisphosphate polyphosphate 5-phosphatase activity. This novel signal transduction intermediate may serve to modulate both Ras and inositol signaling pathways. Based on its properties, we suggest the 145-kDa protein be called SHIP for SH2-containing inositol phosphatase.
Resumo:
We report here on the ability of IDRA 21 and aniracetam, two negative allosteric modulators of glutamate-induced DL-alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor desensitization, to attenuate alprazolam-induced learning deficit in patas monkeys working in a complex behavioral task. In one component of a multiple schedule (repeated acquisition or "learning"), patas monkeys acquired a different four-response chain each session by responding sequentially on three keys in the presence of four discriminative stimuli (geometric forms or numerals). In the other component (performance) the four-response chain was the same each session. The response chain in each component was maintained by food presentation under a fixed-ratio schedule. When alprazolam (0.1 or 0.32 mg/kg p.o.) was administered alone, this full allosteric modulator of gamma-aminobutyric acid type A (GABAA) receptors produced large decreases in the response rate and accuracy in the learning component of the task. IDRA 21 (3 or 5.6 mg/kg p.o.) and aniracetam (30 mg/kg p.o.) administered 60 min before alprazolam, having no effect when given alone, antagonized the large disruptive effects of alprazolam on learning. From dose-response studies, it can be estimated that IDRA 21 is approximately 10-fold more potent than aniracetam in antagonizing alprazolam-induced learning deficit. We conclude that IDRA 21, a chemically unrelated pharmacological congener of aniracetam, improves learning deficit induced in patas monkeys by the increase of GABAergic tone elicited by alprazolam. Very likely IDRA 21 exerts its behavioral effects by antagonizing AMPA receptor desensitization.
Resumo:
Cancer is a disease that begins with mutation of critical genes: oncogenes and tumor suppressor genes. Our research on carcinogenic aromatic hydrocarbons indicates that depurinating hydrocarbon–DNA adducts generate oncogenic mutations found in mouse skin papillomas (Proc. Natl. Acad. Sci. USA 92:10422, 1995). These mutations arise by mis-replication of unrepaired apurinic sites derived from the loss of depurinating adducts. This relationship led us to postulate that oxidation of the carcinogenic 4-hydroxy catechol estrogens (CE) of estrone (E1) and estradiol (E2) to catechol estrogen-3,4-quinones (CE-3, 4-Q) results in electrophilic intermediates that covalently bind to DNA to form depurinating adducts. The resultant apurinic sites in critical genes can generate mutations that may initiate various human cancers. The noncarcinogenic 2-hydroxy CE are oxidized to CE-2,3-Q and form only stable DNA adducts. As reported here, the CE-3,4-Q were bound to DNA in vitro to form the depurinating adduct 4-OHE1(E2)-1(α,β)-N7Gua at 59–213 μmol/mol DNA–phosphate whereas the level of stable adducts was 0.1 μmol/mol DNA–phosphate. In female Sprague–Dawley rats treated by intramammillary injection of E2-3,4-Q (200 nmol) at four mammary glands, the mammary tissue contained 2.3 μmol 4-OHE2-1(α,β)-N7Gua/molDNA–phosphate. When 4-OHE1(E2) were activated by horseradish peroxidase, lactoperoxidase, or cytochrome P450, 87–440 μmol of 4-OHE1(E2)-1(α, β)-N7Gua was formed. After treatment with 4-OHE2, rat mammary tissue contained 1.4 μmol of adduct/mol DNA–phosphate. In each case, the level of stable adducts was negligible. These results, complemented by other data, strongly support the hypothesis that CE-3,4-Q are endogenous tumor initiators.
Resumo:
To investigate the molecular basis of PTEN-mediated tumor suppression, we introduced a null mutation into the mouse Pten gene by homologous recombination in embryonic stem (ES) cells. Pten−/− ES cells exhibited an increased growth rate and proliferated even in the absence of serum. ES cells lacking PTEN function also displayed advanced entry into S phase. This accelerated G1/S transition was accompanied by down-regulation of p27KIP1, a major inhibitor for G1 cyclin-dependent kinases. Inactivation of PTEN in ES cells and in embryonic fibroblasts resulted in elevated levels of phosphatidylinositol 3,4,5,-trisphosphate, a product of phosphatidylinositol 3 kinase. Consequently, PTEN deficiency led to dosage-dependent increases in phosphorylation and activation of Akt/protein kinase B, a well-characterized target of the phosphatidylinositol 3 kinase signaling pathway. Akt activation increased Bad phosphorylation and promoted Pten−/− cell survival. Our studies suggest that PTEN regulates the phosphatidylinositol 3,4,5,-trisphosphate and Akt signaling pathway and consequently modulates two critical cellular processes: cell cycle progression and cell survival.
Resumo:
A cDNA encoding for a functional ornithine decarboxylase has been isolated from a cDNA library of carpels of tomato (Lycopersicon esculentum Mill.). Ornithine decarboxylase in tomato is represented by a single-copy gene that we show to be up-regulated during early fruit growth induced by 2,4-dichlorophenoxyacetic acid and gibberellic acid.
Resumo:
In extracts of immature soybean (Glycine max [L.] Merr.) seeds inositol tetrakisphosphate was formed from [3H]inositol 1,3,4-trisphosphate but not from [3H]inositol 1,4,5-trisphosphate. Inositol 1,3,4-trisphosphate kinase was purified to a specific activity of 3.55 min−1 mg−1 by polyethylenimine clarification and anion-exchange chromatography. The partially purified enzyme converted [3H]inositol 1,3,4-trisphosphate to inositol 1,3,4,5-tetrakisphosphate as the major product and inositol 1,3,4,6- and/or 1,2,3,4-tetrakisphosphate as the minor product. Subsequent experiments revealed a separate inositol 1,3,4,5-tetrakisphosphate 6-kinase activity, which could link these enzymes to inositol hexakisphosphate synthesis via the previously reported inositol 1,3,4,5,6-pentakisphosphate 2-kinase. The apparent Km values for inositol 1,3,4-trisphosphate kinase were 200 ± 0 nm for inositol 1,3,4-trisphosphate and 171 ± 4 μm for ATP, and the reaction was not reversible. The kinetics were such that no activity could be detected using unlabeled inositol 1,3,4-trisphosphate and [γ-32P]ATP, which suggested that other kinases may have been observed when less purified fractions were incubated with radiolabeled ATP. Inositol 1,3,4-trisphosphate kinase was nonspecifically inhibited more than 80% by various inositol polyphosphates at a concentration of 100 μm.
Resumo:
Inositol phosphates are a family of water-soluble intracellular signaling molecules derived from membrane inositol phospholipids. They undergo a variety of complex interconversion pathways, and their levels are dynamically regulated within the cytosol in response to a variety of agonists. Relatively little is known about the biological function of most members of this family, with the exception of inositol 1,4,5-trisphosphate. Specifically, the biological functions of inositol tetrakisphosphates are largely obscure. In this paper, we report that D-myo-inositol 3,4,5,6-tetrakisphosphate (D-Ins(3,4,5,6)P4) has a direct biphasic (activation/inhibition) effect on an epithelial Ca(2+)-activated chloride channel. The effect of D-Ins(3,4,5,6)P4 is not mimicked by other inositol tetrakisphosphate isomers, is dependent on the prevailing calcium concentration, and is influenced when channels are phosphorylated by calmodulin kinase II. The predominant effect of D-Ins(3,4,5,6)P4 on phosphorylated channels is inhibitory at levels of intracellular calcium observed in stimulated cells. Our findings indicate the biological function of a molecule hitherto considered as an "orphan" messenger. They suggest that the molecular target for D-Ins(3,4,5,6)P4 is a plasma membrane Ca(2+)-activated chloride channel. Regulation of this channel by D-Ins(3,4,5,6)P4 and Ca2+ may have therapeutic implications for the disease states of both diabetic nephropathy and cystic fibrosis.