11 resultados para 291801 Fluidization and Fluid Mechanics
em National Center for Biotechnology Information - NCBI
Resumo:
Yeast Rsp5p and its mammalian homologue, Nedd4, are hect domain ubiquitin-protein ligases (E3s) required for the ubiquitin-dependent endocytosis of plasma membrane proteins. Because ubiquitination is sufficient to induce internalization, E3-mediated ubiquitination is a key regulatory event in plasma membrane protein endocytosis. Rsp5p is an essential, multidomain protein containing an amino-terminal C2 domain, three WW protein-protein interaction domains, and a carboxy-terminal hect domain that carries E3 activity. In this study, we demonstrate that Rsp5p is peripherally associated with membranes and provide evidence that Rsp5p functions as part of a multimeric protein complex. We define the function of Rsp5p and its domains in the ubiquitin-dependent internalization of the yeast α-factor receptor, Ste2p. Temperature-sensitive rsp5 mutants were unable to ubiquitinate or to internalize Ste2p at the nonpermissive temperature. Deletion of the entire C2 domain had no effect on α-factor internalization; however, point mutations in any of the three WW domains impaired both receptor ubiquitination and internalization. These observations indicate that the WW domains play a role in the important regulatory event of selecting phosphorylated proteins as endocytic cargo. In addition, mutations in the C2 and WW1 domains had more severe defects on transport of fluid-phase markers to the vacuole than on receptor internalization, suggesting that Rsp5p functions at multiple steps in the endocytic pathway.
Resumo:
In polarized HepG2 hepatoma cells, sphingolipids are transported to the apical, bile canalicular membrane by two different transport routes, as revealed with fluorescently tagged sphingolipid analogs. One route involves direct, transcytosis-independent transport of Golgi-derived glucosylceramide and sphingomyelin, whereas the other involves basolateral to apical transcytosis of both sphingolipids. We show that these distinct routes display a different sensitivity toward nocodazole and cytochalasin D, implying a specific transport dependence on either microtubules or actin filaments, respectively. Thus, nocodazole strongly inhibited the direct route, whereas sphingolipid transport by transcytosis was hardly affected. Moreover, nocodazole blocked “hyperpolarization,” i.e., the enlargement of the apical membrane surface, which is induced by treating cells with dibutyryl-cAMP. By contrast, the transcytotic route but not the direct route was inhibited by cytochalasin D. The actin-dependent step during transcytotic lipid transport probably occurs at an early endocytic event at the basolateral plasma membrane, because total lipid uptake and fluid phase endocytosis of horseradish peroxidase from this membrane were inhibited by cytochalasin D as well. In summary, the results show that the two sphingolipid transport pathways to the apical membrane must have a different requirement for cytoskeletal elements.
Resumo:
Paleontological data for the diversity of marine animals and land plants are shown to correlate significantly with a concurrent measure of stable carbon isotope fractionation for approximately the last 400 million years. The correlations can be deduced from the assumption that increasing plant diversity led to increasing chemical weathering of rocks and therefore an increasing flux of carbon from the atmosphere to rocks, and nutrients from the continents to the oceans. The CO2 concentration dependence of photosynthetic carbon isotope fractionation then indicates that the diversification of land plants led to decreasing CO2 levels, while the diversification of marine animals derived from increasing nutrient availability. Under the explicit assumption that global biodiversity grows with global biomass, the conservation of carbon shows that the long-term fluctuations of CO2 levels were dominated by complementary changes in the biological and fluid reservoirs of carbon, while the much larger geological reservoir remained relatively constant in size. As a consequence, the paleontological record of biodiversity provides an indirect estimate of the fluctuations of ancient CO2 levels.
Resumo:
Cytotoxic T cells recognize mosaic structures consisting of target peptides embedded within self-major histocompatibility complex (MHC) class I molecules. This structure has been described in great detail for several peptide-MHC complexes. In contrast, how T-cell receptors recognize peptide-MHC complexes have been less well characterized. We have used a complete set of singly substituted analogs of a mouse MHC class I, Kk-restricted peptide, influenza hemagglutinin (Ha)255-262, to address the binding specificity of this MHC molecule. Using the same peptide-MHC complexes we determined the fine specificity of two Ha255-262-specific, Kk-restricted T cells, and of a unique antibody, pSAN, specific for the same peptide-MHC complex. Independently, a model of the Ha255-262-Kk complex was generated through homology modeling and molecular mechanics refinement. The functional data and the model corroborated each other showing that peptide residues 1, 3, 4, 6, and 7 were exposed on the MHC surface and recognized by the T cells. Thus, the majority, and perhaps all, of the side chains of the non-primary anchor residues may be available for T-cell recognition, and contribute to the stringent specificity of T cells. A striking similarity between the specificity of the T cells and that of the pSAN antibody was found and most of the peptide residues, which could be recognized by the T cells, could also be recognized by the antibody.
Resumo:
Cholecystokinin (CCK) secretion in rats and humans is inhibited by pancreatic proteases and bile acids in the intestine. It has been hypothesized that the inhibition of CCK release caused by pancreatic proteases is due to proteolytic inactivation of a CCK-releasing peptide present in intestinal secretion. To purify the putative luminal CCK-releasing factor (LCRF), intestinal secretions were collected by perfusing a modified Thiry-Vella fistula of jejunum in conscious rats. From these secretions, the peptide was concentrated by ultrafiltration followed by low-pressure reverse-phase chromatography and purified by reverse-phase high-pressure liquid chromatography. Purity was confirmed by high-performance capillary electrophoresis. Fractions were assayed for CCK-releasing activity by their ability to stimulate pancreatic protein secretion when infused into the proximal small intestine of conscious rats. Partially purified fractions strongly stimulated both pancreatic secretion and CCK release while CCK receptor blockade abolished the pancreatic response. Amino acid analysis and mass spectral analysis showed that the purified peptide is composed of 70-75 amino acid residues and has a mass of 8136 Da. Microsequence analysis of LCRF yielded an amino acid sequence for 41 residues as follows: STFWAYQPDGDNDPTDYQKYEHTSSPSQLLAPGDYPCVIEV. When infused intraduodenally, the purified peptide stimulated pancreatic protein and fluid secretion in a dose-related manner in conscious rats and significantly elevated plasma CCK levels. Immunoaffinity chromatography using antisera raised to synthetic LCRF-(1-6) abolished the CCK releasing activity of intestinal secretions. These studies demonstrate, to our knowledge, the first chemical characterization of a luminally secreted enteric peptide functioning as an intraluminal regulator of intestinal hormone release.
Resumo:
Vascular endothelium is an important transducer and integrator of both humoral and biomechanical stimuli within the cardiovascular system. Utilizing a differential display approach, we have identified two genes, Smad6 and Smad7, encoding members of the MAD-related family of molecules, selectively induced in cultured human vascular endothelial cells by steady laminar shear stress, a physiologic fluid mechanical stimulus. MAD-related proteins are a recently identified family of intracellular proteins that are thought to be essential components in the signaling pathways of the serine/threonine kinase receptors of the transforming growth factor β superfamily. Smad6 and Smad7 possess unique structural features (compared with previously described MADs), and they can physically interact with each other, and, in the case of Smad6, with other known human MAD species, in endothelial cells. Transient expression of Smad6 or Smad7 in vascular endothelial cells inhibits the activation of a transfected reporter gene in response to both TGF-β and fluid mechanical stimulation. Both Smad6 and Smad7 exhibit a selective pattern of expression in human vascular endothelium in vivo as detected by immunohistochemistry and in situ hybridization. Thus, Smad6 and Smad7 constitute a novel class of MAD-related proteins, termed vascular MADs, that are induced by fluid mechanical forces and can modulate gene expression in response to both humoral and biomechanical stimulation in vascular endothelium.
Resumo:
Phosphorylation of the α-subunit of Na+,K+-ATPase plays an important role in the regulation of this pump. Recent studies suggest that insulin, known to increase solute and fluid reabsorption in mammalian proximal convoluted tubule (PCT), is stimulating Na+,K+-ATPase activity through the tyrosine phosphorylation process. This study was therefore undertaken to evaluate the role of tyrosine phosphorylation of the Na+,K+-ATPase α-subunit in the action of insulin. In rat PCT, insulin and orthovanadate (a tyrosine phosphatase inhibitor) increased tyrosine phosphorylation level of the α-subunit more than twofold. Their effects were not additive, suggesting a common mechanism of action. Insulin-induced tyrosine phosphorylation was prevented by genistein, a tyrosine kinase inhibitor. The site of tyrosine phosphorylation was identified on Tyr-10 by controlled trypsinolysis in rat PCTs and by site-directed mutagenesis in opossum kidney cells transfected with rat α-subunit. The functional relevance of Tyr-10 phosphorylation was assessed by 1) the abolition of insulin-induced stimulation of the ouabain-sensitive 86Rb uptake in opossum kidney cells expressing mutant rat α1-subunits wherein tyrosine was replaced by alanine or glutamine; and 2) the similarity of the time course and dose dependency of the insulin-induced increase in ouabain-sensitive 86Rb uptake and tyrosine phosphorylation. These findings indicate that phosphorylation of the Na+,K+-ATPase α-subunit at Tyr-10 likely participates in the physiological control of sodium reabsorption in PCT.
Resumo:
The kidneys of patients with autosomal dominant polycystic kidney disease become massively enlarged due to the progressive expansion of myriad fluid-filled cysts. The epithelial cells that line the cyst walls are responsible for secreting the cyst fluid, but the mechanism through which this secretion occurs is not well established. Recent studies suggest that renal cyst epithelial cells actively secrete Cl across their apical membranes, which in turn drives the transepithelial movement of Na and water. The characteristics of this secretory flux suggest that it is dependent upon the participation of an apical cystic fibrosis transmembrane conductance regulator (CFTR)-like Cl channel and basolateral Na,K-ATPase. To test this hypothesis, we have immunolocalized the CFTR and Na,K-ATPase proteins in intact cysts and in cyst epithelial cells cultured in vitro on permeable filter supports. In both settings, cyst epithelial cells were found to possess Na,K-ATPase exclusively at their basolateral surfaces; apical labeling was not detected. The CFTR protein was present at the apical surfaces of cyst epithelial cells that had been stimulated to secrete through incubation in forskolin. CFTR was detected in intracellular structures in cultured cyst epithelial cells that had not received the forskolin treatment. These results demonstrate that the renal epithelial cells that line cysts in autosomal dominant polycystic kidney disease express transport systems with the appropriate polarity to mediate active Cl and fluid secretion.
Resumo:
The renin-angiotensin system plays a critical role in sodium and fluid homeostasis. Genetic or acquired alterations in the expression of components of this system are strongly implicated in the pathogenesis of hypertension. To specifically examine the physiological and genetic functions of the type 1A receptor for angiotensin II, we have disrupted the mouse gene encoding this receptor in embryonic stem cells by gene targeting. Agtr1A(-/-) mice were born in expected numbers, and the histomorphology of their kidneys, heart, and vasculature was normal. AT1 receptor-specific angiotensin II binding was not detected in the kidneys of homozygous Agtr1A(-/-) mutant animals, and Agtr1A(+/-) heterozygotes exhibited a reduction in renal AT1 receptor-specific binding to approximately 50% of wild-type [Agtr1A(+/+)] levels. Pressor responses to infused angiotensin II were virtually absent in Agtr1A(-/-) mice and were qualitatively altered in Agtr1A(+/-) heterozygotes. Compared with wild-type controls, systolic blood pressure measured by tail cuff sphygmomanometer was reduced by 12 mmHg (1 mmHg = 133 Pa) in Agtr1A(+/-) mice and by 24 mmHg in Agtr1A(-/-) mice. Similar differences in blood pressure between the groups were seen when intraarterial pressures were measured by carotid cannulation. These studies demonstrate that type 1A angiotensin II receptor function is required for vascular and hemodynamic responses to angiotensin II and that altered expression of the Agtr1A gene has marked effects on blood pressures.
Resumo:
We extend and apply theories of filled foam elasticity and failure to recently available data on foods. The predictions of elastic modulus and failure mode dependence on internal pressure and on wall integrity are borne out by photographic evidence of distortion and failure under compressive loading and under the localized stress applied by a knife blade, and by mechanical data on vegetables differing only in their turgor pressure. We calculate the dry modulus of plate-like cellular solids and the cross over between dry-like and fully fluid-filled elastic response. The bulk elastic properties of limp and aging cellular solids are calculated for model systems and compared with our mechanical data, which also show two regimes of response. The mechanics of an aged, limp beam is calculated, thus offering a practical procedure for comparing experiment and theory. This investigation also thereby offers explanations of the connection between turgor pressure and crispness and limpness of cellular materials.