4 resultados para 290100 Industrial Biotechnology and Food Sciences
em National Center for Biotechnology Information - NCBI
Resumo:
The development of improved technology for agricultural production and its diffusion to farmers is a process requiring investment and time. A large number of studies of this process have been undertaken. The findings of these studies have been incorporated into a quantitative policy model projecting supplies of commodities (in terms of area and crop yields), equilibrium prices, and international trade volumes to the year 2020. These projections show that a “global food crisis,” as would be manifested in high commodity prices, is unlikely to occur. The same projections show, however, that in many countries, “local food crisis,” as manifested in low agricultural incomes and associated low food consumption in the presence of low food prices, will occur. Simulations show that delays in the diffusion of modern biotechnology research capabilities to developing countries will exacerbate local food crises. Similarly, global climate change will also exacerbate these crises, accentuating the importance of bringing strengthened research capabilities to developing countries.
Resumo:
While the last 50 years of agriculture have focused on meeting the food, feed, and fiber needs of humans, the challenges for the next 50 years go far beyond simply addressing the needs of an ever-growing global population. In addition to producing more food, agriculture will have to deal with declining resources like water and arable land, need to enhance nutrient density of crops, and achieve these and other goals in a way that does not degrade the environment. Biotechnology and other emerging life sciences technologies offer valuable tools to help meet these multidimensional challenges. This paper explores the possibilities afforded through biotechnology in providing improved agronomic “input” traits, differentiated crops that impart more desirable “output” traits, and using plants as green factories to fortify foods with valuable nutrients naturally rather than externally during food processing. The concept of leveraging agriculture as green factories is expected to have tremendous positive implications for harnessing solar energy to meet fiber and fuel needs as well. Widespread adaptation of biotech-derived products of agriculture should lay the foundation for transformation of our society from a production-driven system to a quality and utility-enhanced system.
Resumo:
The food system dominates anthropogenic disruption of the nitrogen cycle by generating excess fixed nitrogen. Excess fixed nitrogen, in various guises, augments the greenhouse effect, diminishes stratospheric ozone, promotes smog, contaminates drinking water, acidifies rain, eutrophies bays and estuaries, and stresses ecosystems. Yet, to date, regulatory efforts to limit these disruptions largely ignore the food system. There are many parallels between food and energy. Food is to nitrogen as energy is to carbon. Nitrogen fertilizer is analogous to fossil fuel. Organic agriculture and agricultural biotechnology play roles analogous to renewable energy and nuclear power in political discourse. Nutrition research resembles energy end-use analysis. Meat is the electricity of food. As the agriculture and food system evolves to contain its impacts on the nitrogen cycle, several lessons can be extracted from energy and carbon: (i) set the goal of ecosystem stabilization; (ii) search the entire production and consumption system (grain, livestock, food distribution, and diet) for opportunities to improve efficiency; (iii) implement cap-and-trade systems for fixed nitrogen; (iv) expand research at the intersection of agriculture and ecology, and (v) focus on the food choices of the prosperous. There are important nitrogen-carbon links. The global increase in fixed nitrogen may be fertilizing the Earth, transferring significant amounts of carbon from the atmosphere to the biosphere, and mitigating global warming. A modern biofuels industry someday may produce biofuels from crop residues or dedicated energy crops, reducing the rate of fossil fuel use, while losses of nitrogen and other nutrients are minimized.
Resumo:
The world has been making progress in improving food security, as measured by the per person availability of food for direct human consumption. However, progress has been very uneven, and many developing countries have failed to participate in such progress. In some countries, the food security situation is today worse than 20 years ago. The persistence of food insecurity does not reflect so much a lack of capacity of the world as a whole to increase food production to whatever level would be required for everyone to have consumption levels assuring satisfactory nutrition. The world already produces sufficient food. The undernourished and the food-insecure persons are in these conditions because they are poor in terms of income with which to purchase food or in terms of access to agricultural resources, education, technology, infrastructure, credit, etc., to produce their own food. Economic development failures account for the persistence of poverty and food insecurity. In the majority of countries with severe food-security problems, the greatest part of the poor and food-insecure population depend greatly on local agriculture for a living. In such cases, development failures are often tantamount to failures of agricultural development. Development of agriculture is seen as the first crucial step toward broader development, reduction of poverty and food insecurity, and eventually freedom from excessive economic dependence on poor agricultural resources. Projections indicate that progress would continue, but at a pace and pattern that would be insufficient for the incidence of undernutrition to be reduced significantly in the medium-term future. As in the past, world agricultural production is likely to keep up with, and perhaps tend to exceed, the growth of the effective demand for food. The problem will continue to be one of persistence of poverty, leading to growth of the effective demand for food on the part of the poor that would fall short of that required for them to attain levels of consumption compatible with freedom from undernutrition.