4 resultados para 270503 Animal Anatomy and Histology

em National Center for Biotechnology Information - NCBI


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Chemical modification of proteins with polyethylene glycol (PEGylation) can increase plasma half-lives, stability, and therapeutic potency. To make a PEGylated recombinant immunotoxin with improved therapeutic properties, we prepared a mutant of anti-Tac(Fv)-PE38 (LMB-2), a recombinant immunotoxin composed of a single-chain Fv fragment of the anti-human Tac monoclonal antibody to the IL-2 receptor α subunit fused to a 38-kDa fragment of Pseudomonas exotoxin. For site-specific PEGylation of LMB-2, one cysteine residue was introduced into the peptide connector (ASGCGPE) between the Fv and the toxin. This mutant LMB-2 (cys1-LMB-2), which retained full cytotoxic activity, was then site-specifically conjugated with 5 or 20 kDa of polyethylene glycol-maleimide. When compared with unmodified LMB-2, both PEGylated immunotoxins showed similar cytotoxic activities in vitro but superior stability at 37°C in mouse serum, a 5- to 8-fold increase in plasma half-lives in mice, and a 3- to 4-fold increase in antitumor activity. This was accompanied by a substantial decrease in animal toxicity and immunogenicity. Site-specific PEGylation of recombinant immunotoxins may increase their therapeutic potency in humans.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Here we describe the first instances to our knowledge of animal virus genome replication, and of de novo synthesis of infectious virions by a nonendogenous virus, in the yeast Saccharomyces cerevisiae, whose versatile genetics offers significant advantages for studying viral replication and virus-host interactions. Flock house virus (FHV) is the most extensively studied member of the Nodaviridae family of (+) strand RNA animal viruses. Transfection of yeast with FHV genomic RNA induced viral RNA replication, transcription, and assembly of infectious virions. Genome replication and virus synthesis were robust: all replicating FHV RNA species were readily detected in yeast by Northern blot analysis and yields of virions per cell were similar to those from Drosophila cells. We also describe in vivo expression and maintenance of a selectable yeast marker gene from an engineered FHV RNA derivative dependent on FHV-directed RNA replication. Use of these approaches with FHV and their possible extension to other viruses should facilitate identification and characterization of host factors required for genomic replication, gene expression, and virion assembly.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The ability of the sulfonylurea receptor (SUR) 1 to suppress seizures and excitotoxic neuron damage was assessed in mice transgenically overexpressing this receptor. Fertilized eggs from FVB mice were injected with a construct containing SUR cDNA and a calcium-calmodulin kinase IIα promoter. The resulting mice showed normal gross anatomy, brain morphology and histology, and locomotor and cognitive behavior. However, they overexpressed the SUR1 transgene, yielding a 9- to 12-fold increase in the density of [3H]glibenclamide binding to the cortex, hippocampus, and striatum. These mice resisted kainic acid-induced seizures, showing a 36% decrease in average maximum seizure intensity and a 75% survival rate at a dose that killed 53% of the wild-type mice. Kainic acid-treated transgenic mice showed no significant loss of hippocampal pyramidal neurons or expression of heat shock protein 70, whereas wild-type mice lost 68–79% of pyramidal neurons in the CA1–3 subfields and expressed high levels of heat shock protein 70 after kainate administration. These results indicate that the transgenic overexpression of SUR1 alone in forebrain structures significantly protects mice from seizures and neuronal damage without interfering with locomotor or cognitive function.