11 resultados para 24-month-old Infants

em National Center for Biotechnology Information - NCBI


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Relationships were examined between spatial learning and hippocampal concentrations of the α, β2, and γ isoforms of protein kinase C (PKC), an enzyme implicated in neuronal plasticity and memory formation. Concentrations of PKC were determined for individual 6-month-old (n = 13) and 24-month-old (n = 27) male Long–Evans rats trained in the water maze on a standard place-learning task and a transfer task designed for rapid acquisition. The results showed significant relationships between spatial learning and the amount of PKC among individual subjects, and those relationships differed according to age, isoform, and subcellular fraction. Among 6-month-old rats, those with the best spatial memory were those with the highest concentrations of PKCγ in the particulate fraction and of PKCβ2 in the soluble fraction. Aged rats had increased hippocampal PKCγ concentrations in both subcellular fractions in comparison with young rats, and memory impairment was correlated with higher PKCγ concentrations in the soluble fraction. No age difference or correlations with behavior were found for concentrations of PKCγ in a comparison structure, the neostriatum, or for PKCα in the hippocampus. Relationships between spatial learning and hippocampal concentrations of calcium-dependent PKC are isoform-specific. Moreover, age-related spatial memory impairment is associated with altered subcellular concentrations of PKCγ and may be indicative of deficient signal transduction and neuronal plasticity in the hippocampal formation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Liver-specific and nonliver-specific methionine adenosyltransferases (MATs) are products of two genes, MAT1A and MAT2A, respectively, that catalyze the formation of S-adenosylmethionine (AdoMet), the principal biological methyl donor. Mature liver expresses MAT1A, whereas MAT2A is expressed in extrahepatic tissues and is induced during liver growth and dedifferentiation. To examine the influence of MAT1A on hepatic growth, we studied the effects of a targeted disruption of the murine MAT1A gene. MAT1A mRNA and protein levels were absent in homozygous knockout mice. At 3 months, plasma methionine level increased 776% in knockouts. Hepatic AdoMet and glutathione levels were reduced by 74 and 40%, respectively, whereas S-adenosylhomocysteine, methylthioadenosine, and global DNA methylation were unchanged. The body weight of 3-month-old knockout mice was unchanged from wild-type littermates, but the liver weight was increased 40%. The Affymetrix genechip system and Northern and Western blot analyses were used to analyze differential expression of genes. The expression of many acute phase-response and inflammatory markers, including orosomucoid, amyloid, metallothionein, Fas antigen, and growth-related genes, including early growth response 1 and proliferating cell nuclear antigen, is increased in the knockout animal. At 3 months, knockout mice are more susceptible to choline-deficient diet-induced fatty liver. At 8 months, knockout mice developed spontaneous macrovesicular steatosis and predominantly periportal mononuclear cell infiltration. Thus, absence of MAT1A resulted in a liver that is more susceptible to injury, expresses markers of an acute phase response, and displays increased proliferation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Fas/Fas ligand (FasL) system participates in regulation of the immune system through the apoptotic process. However, the extent to which abnormalities in this system are involved in the loss of self-tolerance and development of autoimmune disease not associated with Fas/FasL mutations remains unknown. The present study addresses this issue in Fas/FasL-intact, systemic lupus erythematosus (SLE)-prone (NZB × NZW) (NZB/W) F1 mice. While splenic B cells from 2-month-old mice before overt SLE expressed Fas poorly, in vitro stimulation with an agonistic anti-CD40 mAb up-regulated their Fas expression, thus revealing the existence of two populations: one was Fashigh and highly susceptible to anti-Fas mAb-induced apoptosis, and the other was Faslow and apoptosis-resistant. The Faslow cells were included in the CD5+ B cell subpopulation and contained most of the cells that produced IgM anti-DNA antibodies. The isotype of anti-DNA antibodies switches from IgM to IgG in NZB/W F1 mice at ages beginning at about 6 months. These IgG anti-DNA antibodies were produced almost exclusively by a subpopulation of splenic B cells that spontaneously expressed low levels of Fas in vivo and were apoptosis-resistant. The findings indicate that precursor B cells for autoantibody production and presumably autoantibody-secreting cells in these mice are relatively resistant to Fas-mediated apoptosis, a finding supporting the concept that abnormalities of Fas-mediated apoptotic process are involved in the development of autoreactive B cells in Fas/FasL-intact autoimmune disease.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A major problem facing the effective treatment of patients with cancer is how to get the specific antitumor agent into every tumor cell. In this report we describe the use of a strategy that, by using retroviral vectors encoding a truncated human CD5 cDNA, allows the selection of only the infected cells, and we show the ability to obtain, before bone marrow transplantation, a population of 5-fluouraci-treated murine bone marrow cells that are 100% marked. This marked population of bone marrow cells is able to reconstitute the hematopoietic system in lethally irradiated mice, indicating that the surface marker lacks deleterious effects on the functionality of bone marrow cells. No gross abnormalities in hematopoiesis were detected in mice repopulated with CD5-expressing cells. Nevertheless, a significant proportion of the hematopoietic cells no longer expresses the surface marker CD5 in the 9-month-old recipient mice. This transcriptional inactivity of the proviral long terminal repeat (LTR) was accompanied by de novo methylation of the proviral sequences. Our results show that the use of the CD5 as a retrovirally encoded marker enables the rapid, efficient, and nontoxic selection in vitro of infected primary cells, which can entirely reconstitute the hematopoietic system in mice. These results should now greatly enhance the power of studies aimed at addressing questions such as generation of cancer-negative hematopoiesis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mutations in the amyloid precursor protein (APP) gene cause early-onset familial Alzheimer disease (AD) by affecting the formation of the amyloid β (Aβ) peptide, the major constituent of AD plaques. We expressed human APP751 containing these mutations in the brains of transgenic mice. Two transgenic mouse lines develop pathological features reminiscent of AD. The degree of pathology depends on expression levels and specific mutations. A 2-fold overexpression of human APP with the Swedish double mutation at positions 670/671 combined with the V717I mutation causes Aβ deposition in neocortex and hippocampus of 18-month-old transgenic mice. The deposits are mostly of the diffuse type; however, some congophilic plaques can be detected. In mice with 7-fold overexpression of human APP harboring the Swedish mutation alone, typical plaques appear at 6 months, which increase with age and are Congo Red-positive at first detection. These congophilic plaques are accompanied by neuritic changes and dystrophic cholinergic fibers. Furthermore, inflammatory processes indicated by a massive glial reaction are apparent. Most notably, plaques are immunoreactive for hyperphosphorylated tau, reminiscent of early tau pathology. The immunoreactivity is exclusively found in congophilic senile plaques of both lines. In the higher expressing line, elevated tau phosphorylation can be demonstrated biochemically in 6-month-old animals and increases with age. These mice resemble major features of AD pathology and suggest a central role of Aβ in the pathogenesis of the disease.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Male aging is accompanied by reduced testosterone production by the Leydig cells, the testosterone-producing cells of the testis. The mechanism by which this occurs is unknown. Based on the observations that reactive oxygen is capable of damaging components of the steroidogenic pathway and that reactive oxygen is produced during steroidogenesis itself, we hypothesized that long-term suppression of steroidogenesis might inhibit or prevent age-related deficits in Leydig cell testosterone production. To test this, we administered contraceptive doses of testosterone to groups of young (3 months old) and middle-aged (13 months old) Brown Norway rats via Silastic implants to suppress endogenous Leydig cell testosterone production. After 8 months, the implants were removed, which rapidly (days) restores the ability of the previously suppressed Leydig cells to produce testosterone. Two months after removing the implants, when the rats of the two groups were 13 and 23 months of age, respectively, the Leydig cells in both cases were found to produce testosterone at the high levels of young Leydig cells, whereas significantly lower levels were produced by the 23-month-old controls. Thus, by placing the Leydig cells in a state of steroidogenic “hibernation,” the reductions in Leydig cell testosterone production that invariably accompany aging did not occur. If hormonal contraception in the human functions the same way, the adverse consequences of reduced testosterone in later life (osteoporosis, reduced muscle mass, reduced libido, mood swings, etc.) might be delayed or prevented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Neural degeneration is one of the clinical manifestations of ataxia–telangiectasia, a disorder caused by mutations in the Atm protein kinase gene. However, neural degeneration was not detected with general purpose light microscopic methods in previous studies using several different lines of mice with disrupted Atm genes. Here, we show electron microscopic evidence of degeneration of several different types of neurons in the cerebellar cortex of 2-month-old Atm knockout mice, which is accompanied by glial activation, deterioration of neuropil structure, and both pre- and postsynaptic degeneration. These findings are similar to those in patients with ataxia–telangiectasia, indicating that Atm knockout mice are a useful model to elucidate the mechanisms underlying neurodegeneration in this condition and to develop and test strategies to palliate and prevent the disease.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pregnenolone sulfate (PREG S) is synthesized in the nervous system and is a major neurosteroid in the rat brain. Its concentrations were measured in the hippocampus and other brain areas of single adult and aged (22–24 month-old) male Sprague–Dawley rats. Significantly lower levels were found in aged rats, although the values were widely scattered and reached, in about half the animals, the same range as those of young ones. The spatial memory performances of aged rats were investigated in two different spatial memory tasks, the Morris water maze and Y-maze. Performances in both tests were significantly correlated and, accompanied by appropriate controls, likely evaluated genuine memory function. Importantly, individual hippocampal PREG S and distance to reach the platform in the water maze were linked by a significant correlation, i.e., those rats with lower memory deficit had the highest PREG S levels, whereas no relationship was found with the PREG S content in other brain areas (amygdala, prefrontal cortex, parietal cortex, striatum). Moreover, the memory deficit of cognitively impaired aged rats was transiently corrected after either intraperitoneal or bilateral intrahippocampal injection of PREG S. PREG S is both a γ-aminobutyric acid antagonist and a positive allosteric modulator at the N-methyl-d-aspartate receptor, and may reinforce neurotransmitter system(s) that decline with age. Indeed, intracerebroventricular injection of PREG S was shown to stimulate acetylcholine release in the adult rat hippocampus. In conclusion, it is proposed that the hippocampal content of PREG S plays a physiological role in preserving and/or enhancing cognitive abilities in old animals, possibly via an interaction with central cholinergic systems. Thus, neurosteroids should be further studied in the context of prevention and/or treatment of age-related memory disorders.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Age of host and transplantation-site microenvironment influence the tumorigenic potential of neoplastically transformed liver epithelial cells. Tumorigenic BAG2-GN6TF rat liver epithelial cells consistently form tumors at ectopic sites, but differentially express tumorigenicity or hepatocytic differentiation in the liver depending on host age and route of cell transplantation into the liver. Direct inoculation into host livers concentrates tumor cells locally, resulting in undifferentiated tumors near the transplantation site in both young (3-month-old) and old (18-month-old) rats. Transplantation-site tumors regress within 1 month in the livers of young rats, but grow progressively in old rats. However, inoculation of cells into the spleen distributes transplanted cells individually throughout the liver, resulting in hepatocytic differentiation by tumor cells with concomitant suppression of their tumorigenicity in young rats. When transplanted into livers of old rats by splenic inoculation, or when young hepatic-transplant recipients are allowed to age, hepatocytic progeny of BAG2-GN6TF cells proliferate to form foci, suggesting that the liver microenvironment of old rats incompletely regulates the proliferation and differentiation of tumor cell-derived hepatocytes. Upon removal from the liver, BAG2-GN6TF-derived hepatocytes revert to an undifferentiated, aggressively tumorigenic phenotype. We posit that the spectrum between normal differentiation and malignant potential of these cells reflects the dynamic interaction of the specific transformation-related genotype of the cells and the characteristics of the tissue microenvironment at the transplantation site. Changes in the tissue milieu, such as those that accompany normal aging, may determine the ability of a genetically aberrant cell to produce a tumor.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pancreatic islet amyloid deposits are a characteristic pathologic feature of non-insulin-dependent diabetes mellitus and contain islet amyloid polypeptide (IAPP; amylin). We used transgenic mice that express human IAPP in pancreatic beta cells to explore the potential role of islet amyloid in the pathogenesis of non-insulin-dependent diabetes mellitus. Extensive amyloid deposits were observed in the pancreatic islets of approximately 80% of male transgenic mice > 13 months of age. Islet amyloid deposits were rarely observed in female transgenic mice (11%) and were never seen in nontransgenic animals. Ultrastructural analysis revealed that these deposits were composed of human IAPP-immunoreactive fibrils that accumulated between beta cells and islet capillaries. Strikingly, approximately half of the mice with islet amyloid deposits were hyperglycemic (plasma glucose > 11 mM). In younger (6- to 9-month-old) male transgenic mice, islet amyloid deposits were less commonly observed but were always associated with severe hyperglycemia (plasma glucose > 22 mM). These data indicate that expression of human IAPP in beta cells predisposes male mice to the development of islet amyloid and hyperglycemia. The frequent concordance of islet amyloid with hyperglycemia in these mice suggests an interdependence of these two conditions and supports the hypothesis that islet amyloid may play a role in the development of hyperglycemia.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The beta-amyloid precursor protein (beta-APP), from which the beta-A4 peptide is derived, is considered to be central to the pathogenesis of Alzheimer disease (AD). Transgenic mice expressing the 751-amino acid isoform of human beta-APP (beta-APP751) have been shown to develop early AD-like histopathology with diffuse deposits of beta-A4 and aberrant tau protein expression in the brain, particularly in the hippocampus, cortex, and amygdala. We now report that beta-APP751 transgenic mice exhibit age-dependent deficits in spatial learning in a water-maze task and in spontaneous alternation in a Y maze. These deficits were mild or absent in 6-month-old transgenic mice but were severe in 12-month-old transgenic mice compared to age-matched wild-type control mice. No other behavioral abnormalities were observed. These mice therefore model the progressive learning and memory impairment that is a cardinal feature of AD. These results provide evidence for a relationship between abnormal expression of beta-APP and cognitive impairments.