4 resultados para 2 Kings 5:1-14

em National Center for Biotechnology Information - NCBI


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cyclin D1 expression is jointly regulated by growth factors and cell adhesion to the extracellular matrix in many cell types. Growth factors are thought to regulate cyclin D1 expression because they stimulate sustained extracellular signal-regulated kinase (ERK) activity. However, we show here that growth factors induce transient ERK activity when added to suspended fibroblasts and sustained ERK activity only when added to adherent fibroblasts. Cell attachment to fibronectin or anti-α5β1 integrin is sufficient to sustain the ERK signal and to induce cyclin D1 in growth factor-treated cells. Moreover, when we force the sustained activation of ERK, by conditional expression of a constitutively active MAP kinase/ERK kinase, we overcome the adhesion requirement for expression of cyclin D1. Thus, at least in part, fibroblasts are mitogen and anchorage dependent, because integrin action allows for a sustained ERK signal and the expression of cyclin D1 in growth factor-treated cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The expression of distinct keratin pairs during epidermal differentiation is assumed to fulfill specific and essential cytoskeletal functions. This is supported by a great variety of genodermatoses exhibiting tissue fragility because of keratin mutations. Here, we show that the loss of K10, the most prominent epidermal protein, allowed the formation of a normal epidermis in neonatal mice without signs of fragility or wound-healing response. However, there were profound changes in the composition of suprabasal keratin filaments. K5/14 persisted suprabasally at elevated protein levels, whereas their mRNAs remained restricted to the basal keratinocytes. This indicated a novel mechanism regulating keratin turnover. Moreover, the amount of K1 was reduced. In the absence of its natural partner we observed the formation of a minor amount of novel K1/14/15 filaments as revealed by immunogold electron microscopy. We suggest that these changes maintained epidermal integrity. Furthermore, suprabasal keratinocytes contained larger keratohyalin granules similar to our previous K10T mice. A comparison of profilaggrin processing in K10T and K10−/− mice revealed an accumulation of filaggrin precursors in the former but not in the latter, suggesting a requirement of intact keratin filaments for the processing. The mild phenotype of K10−/− mice suggests that there is a considerable redundancy in the keratin gene family.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cytotoxic T lymphocytes are important effectors of antiviral immunity, and they induce target cell death either by secretion of cytoplasmic granules containing perforin and granzymes or by signaling through the Fas cell surface antigen. Although it is not known whether the granule-mediated and Fas-mediated cytolytic mechanisms share common components, proteinase activity has been implicated as an important feature of both pathways. The orthopoxviruses cowpox virus and rabbitpox virus each encode three members of the serpin family of proteinase inhibitors, designated SPI-1, SPI-2, and SPI-3. Of these, SPI-2 (also referred to as cytokine response modifier A in cowpox virus) has been shown to inhibit the proteolytic activity of both members of the interleukin 1 beta converting enzyme family and granzyme B. We report here that cells infected with cowpox or rabbitpox viruses exhibit resistance to cytolysis by either cytolytic mechanism. Whereas mutation of the cytokine response modifier A/SPI-2 gene was necessary to relieve inhibition of Fasmediated cytolysis, in some cell types mutation of SPI-1, in addition to cytokine response modifier A/SPI-2, was necessary to completely abrogate inhibition. In contrast, viral inhibition of granule-mediated killing was unaffected by mutation of cytokine response modifier A/SPI-2 alone, and it was relieved only when both the cytokine response modifier A/SPI-2 and SPI-1 genes were inactivated. These results suggest that an interleukin 1 beta converting enzyme-like enzymatic activity is involved in both killing mechanisms and indicate that two viral proteins, SPI-1 and cytokine response modifier A/SPI-2, are necessary to inhibit both cytolysis pathways.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

By using RAR type (alpha, beta, or gamma)-specific synthetic retinoids and a pan-retinoic X receptor (RXR)-specific ligand, we have investigated the contribution of RARs and RXRs in the activation of RA target genes and the differentiation of embryonal carcinoma cells. We demonstrate cell-type- and promoter context-dependent functional redundancies that differ between the three RAR types for mediating the induction of RARbeta2 and Hoxa-1 in wild-type, RARgamma-/- and RARalpha-/- F9 cells and in P19 cells. The extent of redundancy between RARs is further modulated by the synergistic activation of RXRs with a pan-RXR agonist. We also demonstrate that the expression of RARbeta2 is auto-inducible in RARgamma-/- but not in wild-type F9 cells, indicating that the functional redundancies observed between RARs in gene disruption studies can be artefactually generated. Thus, even though all three RARs can functionally substitute each other for inducing the expression of RA target genes and cell differentiation, one RAR can cell-specifically override the activity of the other RARs. Interestingly, only RARgamma can mediate the retinoic acid-induced differentiation of wild-type F9 cells, whereas the differentiation of P19 cells can be mediated by either RARalpha or RARgamma.